搭建Flink集群、集群HA高可用以及配置历史服务器

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 本文介绍了如何搭建一个Flink集群、Flink集群HA高可用,并配置历史服务器以记录Job任务执行的详细信息和状态。

Flink集群搭建

集群规划

节点 node01 node02 node03
角色 JobManager
TaskManager
TaskManager TaskManager

下载并解压安装包

wget https://repo.huaweicloud.com/apache/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz

在node01节点下载flink安装包,同时解压、重命名。

tar  -zxvf flink-1.17.0-bin-scala_2.12.tgz
mv flink-1.17.0 flink

修改集群配置

进入flink的conf目录,修改集群配置

vim /usr/local/program/flink/conf/flink-conf.yaml

1.修改flink-conf.yaml文件

JobManager节点配置

# jobmanager.rpc.address: localhost
# jobmanager.bind-host: localhost
jobmanager.rpc.address: node01
jobmanager.bind-host: 0.0.0.0

# rest.address: localhost
# rest.bind-address: localhost
rest.address: node01
rest.bind-address: 0.0.0.0

TaskManager节点配置

# taskmanager.host: localhost
# taskmanager.bind-host: localhost

taskmanager.host: node01
taskmanager.bind-host: 0.0.0.0

注意:需要在/etc/hosts文件中配置各个节点信息

172.29.234.1    node01    node01
172.29.234.2    node02    node02
172.29.234.3    node03    node03

2.修改workers文件

指定node01、node02、node03等节点为TaskManager

# localhost
node01
node02
node03

3.修改masters文件

# localhost:8081
node01:8081

分发安装目录

node01节点安装、配置好后,将Flink安装目录分发给另外两个节点服务器。

[root@node01 program]# pwd
/usr/local/program
[root@node01 program]# ls
flink                            jdk8

[root@node01 program]# scp -r flink node02:/usr/local/program/flink

[root@node01 program]# scp -r flink node03:/usr/local/program/flink

在node02、node03节点,修改flink-conf.yaml配置

1.node02节点

# taskmanager.host: localhost

taskmanager.host: node02

2.node03节点

# taskmanager.host: localhost

taskmanager.host: node03

启动集群

Flink附带了相关的bash脚本,可以用于启动、停止集群。

# 启动集群
./bin/start-cluster.sh

# 停止集群
./bin/stop-cluster.sh

node01节点服务器上执行start-cluster.sh脚本以启动Flink集群

[root@node01 bin]# cd /usr/local/program/flink/bin

[root@node01 bin]# ./start-cluster.sh 
Starting cluster.
Starting standalonesession daemon on host node01.
Starting taskexecutor daemon on host node01.
Starting taskexecutor daemon on host node02.
Starting taskexecutor daemon on host node03.

查看进程情况

[root@node01 bin]# jps
6788 StandaloneSessionClusterEntrypoint
7256 Jps
7116 TaskManagerRunner
[root@node02 conf]# jps
16884 TaskManagerRunner
16959 Jps
[root@node03 conf]# jps
17139 TaskManagerRunner
17214 Jps

访问Web UI

当如上所示一样后,代表启动成功,此时可以访问http://node01:8081对flink集群和任务进行监控管理。

image.png

注意:关闭防火墙,否则可能无法访问,或者集群的TaskManager数量、Slot数量显示异常

systemctl stop firewalld

Flink集群HA高可用

概述

集群实际上只有一个JobManager,是存在单点故障的,官方提供了Standalone Cluster HA模式来实现集群高可用。

集群可以有多个JobManager,但只有一个处于active状态,其余的则处于备用状态,Flink使用 ZooKeeper来选举出Active JobManager,并依赖其来提供一致性协调服务,所以需要预先安装 ZooKeeper 。

Flink本身提供了内置ZooKeeper插件,可以直接修改conf/zoo.cfg,并且使用/bin/start-zookeeper-quorum.sh直接启动。

集群规划

节点 node01 node02 node03
角色 JobManager
TaskManager
JobManager
TaskManager
TaskManager

配置flink

基于Flink集群的node01节点配置的情况下,修改conf/flink-conf.yaml文件,增加如下配置:

# 配置使用zookeeper来开启高可用模式
high-availability.type: zookeeper

# 配置zookeeper的地址,采用zookeeper集群时,可以使用逗号来分隔多个节点地址
high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181

# 在zookeeper上存储flink集群元信息的路径
high-availability.zookeeper.path.root: /flink

# 集群id 放置集群的所有必需协调数据
high-availability.cluster-id: /cluster_one

# 持久化存储JobManager元数据的地址,zookeeper上存储的只是指向该元数据的指针信息
high-availability.storageDir: hdfs://node01:9000/flink/recovery

配置master、workers

修改conf/masters文件,配置master节点

node01:8081
node02:8081

修改conf/workers文件,配置worker节点

node01
node02
node03

配置ZK

编辑vim zoo.cfg文件

server.1=node01:2888:3888
server.2=node02:2888:3888
server.3=node03:2888:3888

分发安装目录

node01节点安装、配置好后,将Flink安装目录分发给另外两个节点服务器。

[root@node01 program]# pwd
/usr/local/program
[root@node01 program]# ls
flink                            jdk8

[root@node01 program]# scp -r flink node02:/usr/local/program/flink

[root@node01 program]# scp -r flink node03:/usr/local/program/flink

在node02、node03节点,修改flink-conf.yaml配置

1.node02节点

jobmanager.rpc.address: node02

taskmanager.host: node02

2.node03节点

taskmanager.host: node03

启动HA集群

分发Flink相关配置到其他节点,然后确保Hadoop和ZooKeeper已经启动后,使用以下命令来启动集群:

[root@node01 flink]# bin/start-cluster.sh
Starting HA cluster with 2 masters.
Starting standalonesession daemon on host node01.
Starting standalonesession daemon on host node02.
Starting taskexecutor daemon on host node01.
Starting taskexecutor daemon on host node02.
Starting taskexecutor daemon on host node03.

访问http://node01:8081
image.png

访问http://node02:8081
image.png

测试

查看ZK:JobManager节点信息
image.png

kill node01节点上的JobManager进程

[root@node01 flink]# jps
2564 DataNode
3508 NodeManager
18741 Jps
7784 QuorumPeerMain
16666 TaskManagerRunner
2363 NameNode
16300 StandaloneSessionClusterEntrypoint
3117 ResourceManager
[root@node01 flink]# kill -9 16300

查看Active JobManager是否变化
image.png

Flink参数配置

flink-conf.yaml文件中有大量的配置参数,基本常见参数如下:

# jobmanager地址    
jobmanager.rpc.address: node01

# JobManager 的 JVM 堆内存大小,默认为 1024m 
jobmanager.heap.size: 1024m

# rpc通信端口
jobmanager.rpc.port: 6123

# 进程使用的全部内存大小,可以根据集群规模进行适当调整
jobmanager.memory.process.size:1600m

# Taskmanager 的 JVM 堆内存大小,默认为 1024m 
taskmanager.heap.size: 1024m

# 进程使用的全部内存大小,可以根据集群规模进行适当调整
taskmanager.memory.process.size: 1728m

# 每个TaskManager能够分配的Slot数量进行配置,默认为1 
# 通常设置为 CPU 核心的数量,或其一半
# Slot就是TaskManager中具体运行一个任务所分配的计算资源
taskmanager.numberOfTaskSlots: 1

# flink任务执行的并行度,默认为1
# 优先级低于代码中进行的并行度配置和任务提交时使用参数指定的并行度数量
parallelism.default: 1

# 重启策略
jobmanager.execution.failover-strategy: region

# 存储临时文件的路径,如果没有配置,则默认采用服务器的临时目录,如 LInux 的 /tmp 目录
io.tmp.dirs: /tmp

参考Flink的官方手册:更多配置

配置历史服务器

概述

运行Flink job的集群一旦停止,只能去yarn或本地磁盘上查看日志,对于Job任务信息的查看、异常问题的排查非常不友好。

Flink提供了历史服务器,用来在相应的Flink集群关闭后查询已完成作业的统计信息。通过History Server可以查询这些已完成作业的统计信息,无论是正常退出还是异常退出。

Flink任务停止后,JobManager会将已经完成任务的统计信息进行存档,History Server进程则在任务停止后可以对任务统计信息进行查询。

配置

创建存储目录

[root@node01 flink]# hadoop fs -mkdir -p /logs/flink-job

在flink-config.yaml中添加如下配置

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/
jobmanager.archive.fs.dir: hdfs://node01:9000/logs/flink-job

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0
historyserver.web.address: node01

# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082
historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/
historyserver.archive.fs.dir: hdfs://node01:9000/logs/flink-job

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000
historyserver.archive.fs.refresh-interval: 5000

启动、停止历史服务器

启动历史服务器

[root@node01 flink]# bin/historyserver.sh start
Starting historyserver daemon on host node01.

停止历史服务器

[root@node01 flink]# bin/historyserver.sh stop
Stopping historyserver daemon (pid: 30749) on host node01.

提交一个Job任务

[root@node01 flink]# bin/flink run -t yarn-per-job -c com.atguigu.wc.WordCountStreamUnboundedDemo  /root/FlinkTutorial-1.17-1.0-SNAPSHOT.jar

2023-06-12 23:41:00,719 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:41:00,742 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:41:00,761 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 23:41:00,766 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0012
2023-06-12 23:41:00,792 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0012
2023-06-12 23:41:00,792 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-06-12 23:41:00,793 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-06-12 23:41:04,565 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 23:41:04,565 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:38887 of application 'application_1686577483648_0012'.
Job has been submitted with JobID cd41d983c93d8eb906c9aa899dcdefd0

访问http://node01:8088/cluster查看Hadoop

image.png

访问Web UI查看提交任务信息
image.png

查看历史Job信息

在浏览器地址栏输入:http://node01:8082 查看已经停止的 job 的统计信息
image.png

停止提交任务

[root@node01 flink]# bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_1686577483648_0012 cd41d983c93d8eb906c9aa899dcdefd0

访问http://node01:9870/explorer.html#/logs/flink-job查看HDFS中的归档文件
image.png

等一段时间,几分钟后查看历史服务器
image.png

查看Job具体信息
image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
107 0
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
100 0
|
2月前
|
弹性计算 监控 容灾
阿里云ECS提供强大的云上灾备解决方案,通过高可用基础设施、多样的数据备份方式及异地灾备服务,帮助企业实现业务的持续稳定运行
在数字化时代,企业对信息技术的依赖加深,确保业务连续性至关重要。阿里云ECS提供强大的云上灾备解决方案,通过高可用基础设施、多样的数据备份方式及异地灾备服务,帮助企业实现业务的持续稳定运行。无论是小型企业还是大型企业,都能从中受益,确保在面对各种风险时保持业务稳定。
54 4
|
2月前
|
NoSQL 容灾 MongoDB
MongoDB主备副本集方案:两台服务器使用非对称部署的方式实现高可用与容灾备份
在资源受限的情况下,为了实现MongoDB的高可用性,本文探讨了两种在两台服务器上部署MongoDB的方案。方案一是通过主备身份轮换,即一台服务器作为主节点,另一台同时部署备节点和仲裁节点;方案二是利用`priority`设置实现自动主备切换。两者相比,方案二自动化程度更高,适合追求快速故障恢复的场景,而方案一则提供了更多的手动控制选项。文章最后对比了这两种方案与标准三节点副本集的优缺点,指出三节点方案在高可用性和数据一致性方面表现更佳。
103 5
|
2月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
131 9
|
3月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
64 4
|
3月前
|
Kubernetes 应用服务中间件 nginx
搭建Kubernetes v1.31.1服务器集群,采用Calico网络技术
在阿里云服务器上部署k8s集群,一、3台k8s服务器,1个Master节点,2个工作节点,采用Calico网络技术。二、部署nginx服务到k8s集群,并验证nginx服务运行状态。
1105 1
|
3月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
222 0
|
8月前
|
资源调度 监控 数据处理
【Flink】Flink集群有哪些角色?各自有什么作用?
【4月更文挑战第18天】【Flink】Flink集群有哪些角色?各自有什么作用?
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
下一篇
开通oss服务