Tugraph Analytics图计算快速上手之紧密中心度算法

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 紧密中心度(Closeness Centrality)计量了一个节点到其他所有节点的紧密性,即该节点到其他节点的距离的倒数;节点对应的值越高表示紧密性越好,能够在图中传播信息的能力越强,可用以衡量信息流入或流出该节点的能力,多用与社交网络中关键节点发掘等场景。

作者:张武科

概述

紧密中心度(Closeness Centrality)计量了一个节点到其他所有节点的紧密性,即该节点到其他节点的距离的倒数;节点对应的值越高表示紧密性越好,能够在图中传播信息的能力越强,可用以衡量信息流入或流出该节点的能力,多用与社交网络中关键节点发掘等场景。

算法介绍

对于图中一个给定节点,紧密性中心性是该节点到其他所有节点的最小距离和的倒数:
1.jpg

其中,u表示待计算紧密中心度的节点,d(u, v)表示节点u到节点v的最短路径距离;实际场景中,更多地使用归一化后的紧密中心度,即计算目标节点到其他节点的平均距离的倒数:
2.jpg

其中,n表示图中节点数。

算法实现

首先,基于AlgorithmUserFunction接口实现ClosenessCentrality,如下:

@Description(name = "closeness_centrality", description = "built-in udga for ClosenessCentrality")
public class ClosenessCentrality implements AlgorithmUserFunction<Long, Long> {
   
   

    private AlgorithmRuntimeContext context;
    private long sourceId;

    @Override
    public void init(AlgorithmRuntimeContext context, Object[] params) {
   
   
        this.context = context;
        if (params.length != 1) {
   
   
            throw new IllegalArgumentException("Only support one arguments, usage: func(sourceId)");
        }
        this.sourceId = ((Number) params[0]).longValue();
    }

    @Override
    public void process(RowVertex vertex, Iterator<Long> messages) {
   
   
        List<RowEdge> edges = context.loadEdges(EdgeDirection.OUT);
        if (context.getCurrentIterationId() == 1L) {
   
   
            context.sendMessage(vertex.getId(), 1L);
            context.sendMessage(sourceId, 1L);
        } else if (context.getCurrentIterationId() == 2L) {
   
   
            context.updateVertexValue(ObjectRow.create(0L, 0L));
            if (vertex.getId().equals(sourceId)) {
   
   
                long vertexNum = -2L;
                while (messages.hasNext()) {
   
   
                    messages.next();
                    vertexNum++;
                }
                // 统计节点数
                context.updateVertexValue(ObjectRow.create(0L, vertexNum));
                // 向邻接点发送与目标点距离
                sendMessageToNeighbors(edges, 1L);
            }
        } else {
   
   
            if (vertex.getId().equals(sourceId)) {
   
   
                long sum = (long) vertex.getValue().getField(0, LongType.INSTANCE);
                while (messages.hasNext()) {
   
   
                    sum += messages.next();
                }
                long vertexNum = (long) vertex.getValue().getField(1, LongType.INSTANCE);
                // 记录最短距离和
                context.updateVertexValue(ObjectRow.create(sum, vertexNum));
            } else {
   
   
                if (((long) vertex.getValue().getField(1, LongType.INSTANCE)) < 1) {
   
   
                    Long meg = messages.next();
                    context.sendMessage(sourceId, meg);
                    // 向邻接点发送与目标点距离
                    sendMessageToNeighbors(edges, meg + 1);
                    // 标记该点已向目标点发送过消息
                    context.updateVertexValue(ObjectRow.create(0L, 1L));
                }
            }
        }
    }

    private void sendMessageToNeighbors(List<RowEdge> outEdges, Object message) {
   
   
        for (RowEdge rowEdge : outEdges) {
   
   
            context.sendMessage(rowEdge.getTargetId(), message);
        }
    }

    @Override
    public void finish(RowVertex vertex) {
   
   
        if (vertex.getId().equals(sourceId)) {
   
   
            long len = (long) vertex.getValue().getField(0, LongType.INSTANCE);
            long num = (long) vertex.getValue().getField(1, LongType.INSTANCE);
            context.take(ObjectRow.create(vertex.getId(), (double) num / len));
        }
    }

    @Override
    public StructType getOutputType() {
   
   
        return new StructType(
            new TableField("id", LongType.INSTANCE, false),
            new TableField("cc", DoubleType.INSTANCE, false)
        );
    }
}

然后,可在 DSL 中引入自定义算法,直接调用使用,语法形式如下:

CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';

INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;

示例表示,计算图中 id = 1节点的紧密中心度。

算法运行

在运行算法之前,要构造算法运行的底图数据。

图定义

首先,进行图定义:

CREATE GRAPH modern (
    Vertex person (
      id bigint ID,
      name varchar,
      age int
    ),
    Vertex software (
      id bigint ID,
      name varchar,
      lang varchar
    ),
    Edge knows (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight double
    ),
    Edge created (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight double
    )
) WITH (
    storeType='rocksdb',
    shardNum = 1
);

图构建

完成图定义之后,导入点边数据,构造数据底图:

CREATE TABLE modern_vertex (
  id varchar,
  type varchar,
  name varchar,
  other varchar
) WITH (
  type='file',
  geaflow.dsl.file.path = 'resource:///data/modern_vertex.txt'
);

CREATE TABLE modern_edge (
  srcId bigint,
  targetId bigint,
  type varchar,
  weight double
) WITH (
  type='file',
  geaflow.dsl.file.path = 'resource:///data/modern_edge.txt'
);

INSERT INTO modern.person
SELECT cast(id as bigint), name, cast(other as int) as age
FROM modern_vertex WHERE type = 'person'
;

INSERT INTO modern.software
SELECT cast(id as bigint), name, cast(other as varchar) as lang
FROM modern_vertex WHERE type = 'software'
;

INSERT INTO modern.knows
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'knows'
;

INSERT INTO modern.created
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'created'
;

计算输出

最后,在底图数据上完成算法计算和结果输出;

CREATE TABLE tbl_result (
  vid int,
    ccValue double
) WITH (
    type='file',
    geaflow.dsl.file.path='/tmp/result'
);

CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';

USE GRAPH modern;

INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;

运行示例

  • input
    ```sql
    // vertex
    1,person,marko,29
    2,person,vadas,27
    3,software,lop,java
    4,person,josh,32
    5,software,ripple,java
    6,person,peter,35

// edge
1,3,created,0.4
1,2,knows,0.5
1,4,knows,1.0
4,3,created,0.4
4,5,created,1.0
3,6,created,0.2


- output
```sql
// result
1,0.714

结语

在本篇文章中我们介绍了如何在TuGraph Analytics上实现紧密中心度算法,如果你觉得比较有趣,欢迎关注我们的社区(https://github.com/TuGraph-family/tugraph-analytics)。开源不易,如果你觉得还不错,可以给我们star支持一下~


GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!

欢迎给我们 Star 哦!

Welcome to give us a Star!

GitHub👉https://github.com/TuGraph-family/tugraph-analytics

更多精彩内容,关注我们的博客 https://geaflow.github.io/

相关文章
|
9天前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
1月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
2月前
|
算法 Go Python
[算法]计算斐波拉契数列
[算法]计算斐波拉契数列
|
2月前
|
算法
计算空间物体包围球的两种算法实现
计算空间物体包围球的两种算法实现
40 0
|
3月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
29 1
|
4月前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
57 2
|
3月前
|
数据采集 存储 算法
「AIGC算法」图搜索算法详解
本文探讨了图搜索算法,包括遍历和最短路径搜索。DFS和BFS是遍历算法,前者使用栈深入搜索,后者用队列逐层遍历。Dijkstra、Bellman-Ford、A*、Floyd-Warshall和Johnson算法则解决最短路径问题。文中还给出了DFS的Python实现示例。这些算法在路径规划、网络分析等领域有重要应用。
34 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
心得经验总结:机器翻译评测——BLEU算法详解(新增在线计算BLEU分值)
心得经验总结:机器翻译评测——BLEU算法详解(新增在线计算BLEU分值)
65 0
|
4天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
下一篇
无影云桌面