基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真

简介: 基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真

1.算法运行效果图预览
40513102b15c59c60c267ae99e1373af_82780907_202309182348460665247485_Expires=1695052726&Signature=1AiSyGZJMp7IcoU3MHtEVJJFLGw%3D&domain=8.jpeg
09b79ce9fa701fc1956c9d761be4efc0_82780907_202309182348460675244728_Expires=1695052726&Signature=wBNRuKInNqejNLFdfNmQB7W9OBY%3D&domain=8.jpeg
f299fd335a175d978187b7bbfcc3c60a_82780907_202309182348460926920790_Expires=1695052726&Signature=Il0jHrIRWlVoRz8BkMIbNaK%2BA%2Bg%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
自编码器(Autoencoder)是一种深度学习模型,可以通过无监督学习的方式来学习数据的低维表示。64QAM星座图整形调制解调通信系统是一种数字通信系统,可以在有限的带宽资源下实现高速数据传输。
b0d46186834f4adc890b1aae46eca908_82780907_202309182350050519659480_Expires=1695052805&Signature=WqYKR%2BnlGtoGQLPlVLjhb0jb6a8%3D&domain=8.png
b7c4d3fe8ee4d13906b230b8f305028c_82780907_202309182350050535852572_Expires=1695052805&Signature=2u9TYNg%2BaGhg5Uy7i472EcuaoPQ%3D&domain=8.png

4.4 实现过程
首先,需要对输入的星座图数据进行预处理,包括数据格式转换、归一化等。预处理过程可以提高模型的鲁棒性和准确性。接下来,需要利用已知的星座图数据集对Autoencoder自编码器进行训练。在训练过程中,需要选择合适的损失函数和优化算法,以提高模型的准确性和泛化能力。 在模型训练完成后,需要利用测试数据集对模型进行测试。测试过程中,需要计算模型的准确性、召回率、精确度和F1值等指标,以评估模型的性能。

   在实际应用中,需要实现实时解调。这可以通过将训练好的模型部署到实际系统中来实现。在实时解调过程中,需要将接收到的信号进行采样和量化,并将量化后的信号输入到模型中进行解调。解调后的数据可以通过解码器进行解码,得到原始数据。

    基于Autoencoder自编码的64QAM星座图整形调制解调通信系统可以应用于数字通信系统中,特别是在高速数据传输场景下。该系统可以通过学习星座图整形和解调的映射关系,实现更加准确和鲁棒的调制和解调过程,提高数据传输的可靠性和速度。

4.部分核心程序

      layer.NoiseMethod = p.Results.NoiseMethod;
      layer.EbNo = p.Results.EbNo;
      layer.EsNo = p.Results.EsNo;
      layer.SNR = p.Results.SNR;
      layer.BitsPerSymbol = p.Results.BitsPerSymbol;
      layer.SignalPower = p.Results.SignalPower;
      layer.Name = p.Results.Name;
      if isempty(p.Results.Description)
        switch p.Results.NoiseMethod
          case 'EbNo'
            value = layer.EbNo;
          case 'EsNo'
            value = layer.EsNo;
          case 'SNR'
            value = layer.SNR;
        end
        layer.Description = "AWGN channel with " + p.Results.NoiseMethod ...
          + " = " + num2str(value);
      else
        layer.Description = p.Results.Description;
      end
      layer.Type = 'AWGN Channel';

      samplesPerSymbol = 1;
      if strcmp(layer.NoiseMethod, 'EbNo')
        EsNo = layer.EbNo + 10*log10(layer.BitsPerSymbol);
        layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);
      elseif strcmp(layer.NoiseMethod, 'EsNo')
        EsNo = layer.EsNo;
        layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);
      else
        layer.LocalSNR = layer.SNR;
      end
    end

 ....................................................
    function dLdX = ...
        backward(layer, X, Z, dLdZ,memory)


      dLdX = dLdZ;
    end

    function sl = saveobj(layer)
      sl.NoiseMethod = layer.NoiseMethod;
      sl.EbNo = layer.EbNo;
      sl.EsNo = layer.EsNo;
      sl.SNR = layer.SNR;
      sl.BitsPerSymbol = layer.BitsPerSymbol;
      sl.SignalPower = layer.SignalPower;
      sl.LocalEsNo = layer.LocalEsNo;
      sl.LocalSNR = layer.LocalSNR;
    end

    function layer = reload(layer,sl)
      layer.NoiseMethod = sl.NoiseMethod;
      layer.EbNo = sl.EbNo;
      layer.EsNo = sl.EsNo;
      layer.SNR = sl.SNR;
      layer.BitsPerSymbol = sl.BitsPerSymbol;
      layer.SignalPower = sl.SignalPower;
      layer.LocalEsNo = sl.LocalEsNo;
      layer.LocalSNR = sl.LocalSNR;
    end
  end

  methods (Static)
    function layer = loadobj(sl)
      if isstruct(sl)
        layer = AutoEncode_channel;
      else
        layer = sl;
      end
      layer = reload(layer,sl);
    end
  end
end
相关文章
|
8天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
33 20
|
17天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
48 16
|
16天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
58 5
|
1月前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。
|
1月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
43 8
|
2月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
1月前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
68 3
|
2月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
61 3
|
1月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码