利用爬虫技术自动化采集汽车之家的车型参数数据

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 汽车之家是一个专业的汽车网站,提供了丰富的汽车信息,包括车型参数、图片、视频、评测、报价等。如果我们想要获取这些信息,我们可以通过浏览器手动访问网站,或者利用爬虫技术自动化采集数据。本文将介绍如何使用Python编写一个简单的爬虫程序,实现对汽车之家的车型参数数据的自动化采集,并使用亿牛云爬虫代理服务来提高爬虫的稳定性和效率。

亿牛云.jpeg

导语

汽车之家是一个专业的汽车网站,提供了丰富的汽车信息,包括车型参数、图片、视频、评测、报价等。如果我们想要获取这些信息,我们可以通过浏览器手动访问网站,或者利用爬虫技术自动化采集数据。本文将介绍如何使用Python编写一个简单的爬虫程序,实现对汽车之家的车型参数数据的自动化采集,并使用亿牛云爬虫代理服务来提高爬虫的稳定性和效率。

概述

爬虫技术是一种通过编程模拟浏览器访问网页,解析网页内容,提取所需数据的技术。爬虫程序通常需要完成以下几个步骤:

  • 发送HTTP请求,获取网页源代码
  • 解析网页源代码,提取所需数据
  • 存储或处理提取的数据

在实际的爬虫开发中,我们还需要考虑一些其他的问题,例如:

  • 如何避免被网站反爬机制识别和封禁
  • 如何提高爬虫的速度和效率
  • 如何处理异常和错误

为了解决这些问题,我们可以使用一些工具和服务来辅助我们的爬虫开发,例如:

  • 使用requests库来发送HTTP请求,简化网络编程
  • 使用BeautifulSoup库或者XPath语法来解析网页源代码,方便数据提取
  • 使用pandas库或者csv模块来存储或处理提取的数据,支持多种数据格式
  • 使用亿牛云爬虫代理服务来隐藏真实IP地址,防止被网站封禁
  • 使用多线程或者协程来并发发送HTTP请求,提高爬虫的速度和效率
  • 使用try-except语句或者logging模块来处理异常和错误,增加爬虫的稳定性和可维护性

正文

下面我们将使用Python编写一个简单的爬虫程序,实现对汽车之家的车型参数数据的自动化采集。我们以"奥迪A4L"为例,获取其所有在售车型的基本参数、动力参数、底盘转向参数、安全装备参数和外部配置参数。

1. 导入所需库和模块

首先,我们需要导入以下几个库和模块:

# 导入requests库,用于发送HTTP请求
import requests

# 导入BeautifulSoup库,用于解析网页源代码
from bs4 import BeautifulSoup

# 导入pandas库,用于存储或处理提取的数据
import pandas as pd

# 导入time模块,用于控制爬虫速度
import time

# 导入random模块,用于生成随机数
import random

# 导入threading模块,用于实现多线程爬虫
import threading

# 导入queue模块,用于实现线程间通信
import queue

# 导入logging模块,用于记录日志信息
import logging

2. 定义全局变量和常量

接下来,我们需要定义一些全局变量和常量,用于存储或控制爬虫程序的运行状态:

# 定义奥迪A4L的车型参数页面的URL
URL = 'https://www.autohome.com.cn/3170/#levelsource=000000000_0&pvareaid=101594'

# 定义亿牛云爬虫代理的域名、端口、用户名、密码
PROXY_HOST = 'www.16yun.cn'
PROXY_PORT = '8020'
PROXY_USER = '16YUN'
PROXY_PASS = '16IP'

# 定义爬虫代理的HTTP头部
PROXY_HEADERS = {
   
   
    'Proxy-Authorization': 'Basic ' + base64.b64encode((PROXY_USER + ':' + PROXY_PASS).encode()).decode()
}

# 定义爬虫请求的HTTP头部UserAgent
HEADERS = {
   
   
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36'
}

# 定义爬虫请求的超时时间(秒)
TIMEOUT = 10

# 定义爬虫请求的重试次数
RETRY = 3

# 定义爬虫请求的最小间隔时间(秒)
MIN_DELAY = 1

# 定义爬虫请求的最大间隔时间(秒)
MAX_DELAY = 3

# 定义爬虫线程的数量
THREADS = 10

# 定义车型参数数据的列名
COLUMNS = ['车型', '基本参数', '动力参数', '底盘转向参数', '安全装备参数', '外部配置参数']

# 定义车型参数数据的空列表,用于存储提取的数据
DATA = []

# 定义车型URL的队列,用于实现线程间通信
QUEUE = queue.Queue()

# 定义日志格式和级别
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)

3. 定义发送HTTP请求的函数

然后,我们需要定义一个函数,用于发送HTTP请求,获取网页源代码:

def get_html(url):
    # 初始化重试次数
    retry = RETRY

    # 循环发送HTTP请求,直到成功或达到重试次数上限
    while retry > 0:
        try:
            # 使用requests库发送HTTP请求,设置代理和超时时间
            response = requests.get(url, headers=HEADERS, proxies={
   
   'http': f'http://{PROXY_USER}:{PROXY_PASS}@{PROXY_HOST}:{PROXY_PORT}'}, timeout=TIMEOUT)

            # 判断HTTP响应状态码是否为200,即成功
            if response.status_code == 200:
                # 返回网页源代码
                return response.text

            # 否则,记录错误信息,并减少重试次数
            else:
                logging.error(f'请求失败,状态码:{response.status_code},URL:{url}')
                retry -= 1

        # 捕获异常,并记录错误信息,并减少重试次数
        except Exception as e:
            logging.error(f'请求异常,异常信息:{e},URL:{url}')
            retry -= 1

    # 如果重试次数为0,说明请求失败,返回空值
    if retry == 0:
        logging.error(f'请求失败,重试次数用尽,URL:{url}')
        return None

4. 定义解析网页源代码的函数

接着,我们需要定义一个函数,用于解析网页源代码,提取所需数据:

def parse_html(html):
    # 使用BeautifulSoup库解析网页源代码,指定解析器为lxml
    soup = BeautifulSoup(html, 'lxml')

    # 使用XPath语法提取车型名称
    car_name = soup.select_one('//div[@class="subnav-title-name"]/a/text()')

    # 使用XPath语法提取车型参数表格
    car_table = soup.select_one('//div[@id="config_data"]/div/table')

    # 判断车型名称和车型参数表格是否存在
    if car_name and car_table:
        # 初始化车型参数数据的字典,用于存储提取的数据
        car_data = {
   
   }

        # 将车型名称添加到车型参数数据的字典中,作为第一个键值对

        # 使用XPath语法提取车型参数表格的所有行
        car_rows = car_table.select('//tr')

        # 遍历车型参数表格的所有行
        for car_row in car_rows:
            # 使用XPath语法提取每一行的第一个单元格,即参数类别
            car_category = car_row.select_one('//th/text()')

            # 使用XPath语法提取每一行的第二个单元格,即参数值
            car_value = car_row.select_one('//td/div/text()')

             # 判断参数类别和参数值是否存在
            if car_category and car_value:
               # 将参数类别和参数值添加到车型参数数据的字典中,作为键值对
               car_data[car_category] = car_value

         # 返回车型参数数据的字典
         return car_data

    # 否则,记录错误信息,并返回空值
    else:
      logging.error('解析失败,无法提取车型名称或车型参数表格')
      return None

5. 定义存储或处理提取的数据的函数

然后,我们需要定义一个函数,用于存储或处理提取的数据:

def save_data(data):
    # 判断数据是否存在
    if data:
        # 将数据添加到车型参数数据的空列表中
        DATA.append(data)

        # 记录信息,显示数据已保存
        logging.info(f'数据已保存,车型:{data["车型"]}')

    # 否则,记录错误信息,显示数据为空
    else:
        logging.error('数据为空,无法保存')

6. 定义爬虫线程的类

接着,我们需要定义一个类,用于实现爬虫线程的功能:

class SpiderThread(threading.Thread):
    # 重写初始化方法,传入线程名称和队列对象
    def __init__(self, name, queue):
        # 调用父类的初始化方法
        super().__init__()

        # 设置线程名称
        self.name = name

        # 设置队列对象
        self.queue = queue

    # 重写运行方法,实现爬虫逻辑
    def run(self):
        # 记录信息,显示线程开始运行
        logging.info(f'线程{self.name}开始运行')

        # 循环从队列中获取车型URL,直到队列为空
        while not self.queue.empty():
            # 从队列中获取车型URL,并移除该元素
            url = self.queue.get()

            # 记录信息,显示正在处理该URL
            logging.info(f'线程{self.name}正在处理{url}')

            # 调用发送HTTP请求的函数,获取网页源代码
            html = get_html(url)

            # 判断网页源代码是否存在
            if html:
                # 调用解析网页源代码的函数,提取所需数据
                data = parse_html(html)

                # 调用存储或处理提取的数据的函数,保存或处理数据
                save_data(data)

            # 否则,记录错误信息,显示网页源代码为空
            else:
                logging.error(f'网页源代码为空,无法处理{url}')

            # 生成一个随机数,作为爬虫请求的间隔时间
            delay = random.randint(MIN_DELAY, MAX_DELAY)

            # 记录信息,显示爬虫请求的间隔时间
            logging.info(f'线程{self.name}等待{delay}秒')

            # 使用time模块暂停爬虫请求的间隔时间
            time.sleep(delay)

        # 记录信息,显示线程结束运行
        logging.info(f'线程{self.name}结束运行')

7. 定义主函数

最后,我们需要定义一个主函数,用于启动爬虫程序:

def main():
    # 记录信息,显示爬虫程序开始运行
    logging.info('爬虫程序开始运行')

    # 调用发送HTTP请求的函数,获取车型参数页面的网页源代码
    html = get_html(URL)

    # 判断网页源代码是否存在
    if html:
        # 使用BeautifulSoup库解析网页源代码,指定解析器为lxml
        soup = BeautifulSoup(html, 'lxml')

        # 使用XPath语法提取所有在售车型的URL列表
        car_urls = soup.select('//div[@id="config_data"]/div/div/ul/li/a/@href')

        # 判断车型URL列表是否存在
        if car_urls:
            # 遍历车型URL列表
            for car_url in car_urls:
                # 将车型URL添加到车型URL的队列中
                QUEUE.put(car_url)

            # 初始化一个空列表,用于存储爬虫线程对象
            threads = []

            # 遍历爬虫线程的数量范围
            for i in range(THREADS):
                # 创建一个爬虫线程对象,并传入线程名称和队列对象
                thread = SpiderThread(f'线程{i+1}', QUEUE)

                # 将爬虫线程对象添加到爬虫线程对象的空列表中
                threads.append(thread)

            # 遍历爬虫线程对象的空列表
            for thread in threads:
                # 启动爬虫线程
                thread.start()

            # 遍历爬虫线程对象的空列表
            for thread in threads:
                # 等待爬虫线程结束
                thread.join()

            # 记录信息,显示所有爬虫线程已结束
            logging.info('所有爬虫线程已结束')

        # 否则,记录错误信息,显示车型URL列表为空
        else:
            logging.error('车型URL列表为空,无法继续爬取')

    # 否则,记录错误信息,显示网页源代码为空
    else:
        logging.error('网页源代码为空,无法继续爬取')

    # 判断车型参数数据的空列表是否存在
    if DATA:
        # 使用pandas库创建一个数据框对象,传入车型参数数据的空列表和列名
        df = pd.DataFrame(DATA, columns=COLUMNS)

        # 使用pandas库将数据框对象保存为CSV文件,指定文件名和编码格式
        df.to_csv('car_data.csv', encoding='utf-8-sig', index=False)

        # 记录信息,显示数据已导出为CSV文件
        logging.info('数据已导出为CSV文件')

    # 否则,记录错误信息,显示数据为空
    else:
        logging.error('数据为空,无法导出')

    # 记录信息,显示爬虫程序结束运行
    logging.info('爬虫程序结束运行')

结语

本文介绍了如何使用Python编写一个简单的爬虫程序,实现对汽车之家的车型参数数据的自动化采集,并使用亿牛云爬虫代理服务来提高爬虫的稳定性和效率。本文只是一个简单的示例,实际的爬虫开发可能需要更多的技巧和知识。希望本文能够对你有所帮助和启发。

相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
122 10
|
28天前
|
数据采集 搜索推荐 数据安全/隐私保护
Referer头部在网站反爬虫技术中的运用
Referer头部在网站反爬虫技术中的运用
|
14天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
98 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
13天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
14天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
24天前
|
数据采集 安全 定位技术
使用代理IP爬虫时数据不完整的原因探讨
在信息化时代,互联网成为生活的重要部分。使用HTTP代理爬取数据时,可能会遇到失败情况,如代理IP失效、速度慢、目标网站策略、请求频率过高、地理位置不当、网络连接问题、代理配置错误和目标网站内容变化等。解决方法包括更换代理IP、调整请求频率、检查配置及目标网站变化。
56 11
|
2月前
|
数据采集 JSON JavaScript
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
本文介绍了如何使用PHP模拟表单提交并结合代理IP技术抓取京东商品的实时名称和价格,特别是在电商大促期间的数据采集需求。通过cURL发送POST请求,设置User-Agent和Cookie,使用代理IP绕过限制,解析返回数据,展示了完整代码示例。
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
|
28天前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。
|
16天前
|
数据采集 安全 API
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
下一篇
开通oss服务