基于 ACK Fluid 的混合云优化数据访问(五):自动化跨区域中心数据分发

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 基于 ACK Fluid 的混合云优化数据访问(五):自动化跨区域中心数据分发

作者:车漾

前文回顾:

本系列将介绍如何基于 ACK Fluid 支持和优化混合云的数据访问场景,相关文章请参考:

-基于 ACK Fluid 的混合云优化数据访问(一):场景与架构

-基于 ACK Fluid 的混合云优化数据访问(二):搭建弹性计算实例与第三方存储的桥梁

-基于 ACK Fluid 的混合云优化数据访问(三):加速第三方存储的读访问,降本增效并行

-基于 ACK Fluid 的混合云优化数据访问(四):将第三方存储目录挂载到 Kubernetes,提升效率和标准化


在之前的文章中,我们讨论了混合云场景下 Kubernetes 与数据相结合的 Day 1:解决数据接入的问题,实现云上计算和线下存储的连接。在此基础上,ACK Fluid 进一步解决了数据访问的成本和性能问题。而进入 Day 2,当用户真的在生产环境使用该方案时,最主要的挑战就是运维側如何处理多区域集群的数据同步。



概述


许多企业出于性能、安全、稳定性和资源隔离的目的,会在不同区域建立多个计算集群。而这些计算集群需要远程访问唯一中心化的数据存储。比如随着大语言模型的逐渐成熟,基于其的多区域推理服务也逐渐成为各个企业需要支持的能力,就是这个场景的具体实例,它有不小的挑战:


  • 多计算集群跨数据中心手动操作数据同步,非常耗时
  • 以大语言模型为例,参数多文件大,数量多,管理复杂:不同业务选择不同的基础模型和业务数据,因此最终模型存在差异。
  • 模型数据会根据业务输入不断做更新迭代,模型数据更新频繁
  • 模型推理服务启动慢,拉取文件时间长:大型语言模型的参数规模相当巨大,体积通常很大甚至达到几百 GB,导致拉取到 GPU 显存的耗时巨大,启动时间非常慢。
  • 模型更新需要所有区域同步更新,而在过载的存储集群上进行复制作业严重影响现有负载的性能。


ACK Fluid 除了提供通用存储客户端的加速能力,还提供了定时和触发式数据迁移和预热能力,简化数据分发的复杂度。


  • 节省网络和计算成本:跨区流量成本大幅降低,计算时间明显缩短,少量增加计算集群成本;并且可以通过弹性进一步优化。
  • 应用数据更新大幅加速:由于计算的数据访问在同一个数据中心或者可用区内完成通信,延时降低,且缓存吞吐并发能力可线性扩展。
  • 减少复杂的数据同步操作:通过自定义策略控制数据同步操作,降低数据访问争抢,同时通过自动化的方式降低运维复杂度。


演示


本演示介绍如何通过 ACK Fluid 的定时预热机制更新用户不同区域的计算集群可以访问的数据。


前提条件

  • 已创建 ACK Pro 版集群,且集群版本为 1.18 及以上。具体操作,请参见创建 ACK Pro 版集群[1]
  • 已安装云原生 AI 套件并部署 ack-fluid 组件。重要若您已安装开源 Fluid,请卸载后再部署 ack-fluid 组件。
  • 未安装云原生 AI 套件:安装时开启 Fluid 数据加速。具体操作,请参见安装云原生 AI 套件[2]
  • 已安装云原生 AI 套件:在容器服务管理控制台[3]云原生 AI 套件页面部署 ack-fluid
  • 已通过 kubectl 连接 Kubernetes 集群。具体操作,请参见通过 kubectl 工具连接集群[4]


背景信息

准备好 K8s 和 OSS 环境的条件,您只需要耗费 10 分钟左右即可完成 JindoRuntime 环境的部署。


步骤一:准备 OSS Bucket 的数据

1. 执行以下命令,下载一份测试数据。


$ wget https://archive.apache.org/dist/hbase/2.5.2/RELEASENOTES.md


2. 将下载的测试数据上传到阿里云 OSS 对应的 Bucket 上,上传方法可以借助 OSS 提供的客户端工具 ossutil。具体操作,请参见安装 ossutil[5]


$ ossutil cp RELEASENOTES.md oss://<bucket>/<path>/RELEASENOTES.md


步骤二:创建Dataset和JindoRuntime

1. 在创建 Dataset 之前,您可以创建一个 mySecret.yaml 文件来保存 OSS 的 accessKeyId 和 accessKeySecret。


创建 mySecret.yaml 文件的 YAML 样例如下:


apiVersion: v1
kind: Secret
metadata:
  name: mysecret
stringData:
  fs.oss.accessKeyId: xxx
  fs.oss.accessKeySecret: xxx


2. 执行以下命令,生成 Secret。


$ kubectl create -f mySecret.yaml


3. 使用以下 YAML 文件样例创建一个名为 dataset.yaml 的文件,且里面包含两部分:


  • 创建一个 Dataset,描述远端存储数据集和 UFS 的信息。
  • 创建一个 JindoRuntime,启动一个 JindoFS 的集群来提供缓存服务。


apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
  name: demo
spec:
  mounts:
    - mountPoint: oss://<bucket-name>/<path>
      options:
        fs.oss.endpoint: <oss-endpoint>
      name: hbase
      path: "/"
      encryptOptions:
        - name: fs.oss.accessKeyId
          valueFrom:
            secretKeyRef:
              name: mysecret
              key: fs.oss.accessKeyId
        - name: fs.oss.accessKeySecret
          valueFrom:
            secretKeyRef:
              name: mysecret
              key: fs.oss.accessKeySecret
  accessModes:
    - ReadOnlyMany
---
apiVersion: data.fluid.io/v1alpha1
kind: JindoRuntime
metadata:
  name: demo
spec:
  replicas: 1
  tieredstore:
    levels:
      - mediumtype: MEM
        path: /dev/shm
        quota: 2Gi
        high: "0.99"
        low: "0.8"
  fuse:
   args:
    - -okernel_cache
    - -oro
    - -oattr_timeout=60
    - -oentry_timeout=60
    - -onegative_timeout=60


相关参数解释如下表所示:


参数 说明
mountPoint oss://<oss_bucket>/<path>表示挂载UFS的路径,路径中不需要包含endpoint信息。
fs.oss.endpoint OSS Bucket的endpoint信息,公网或私网地址皆可。
accessModes 表示Dataset的访问模式。
replicas 表示创建JindoFS集群的Worker数量。
mediumtype 表示缓存类型。定义创建JindoRuntime模板样例时,JindoFS暂时支持HDD/SSD/MEM中的其中一种缓存类型。
path 表示存储路径,暂时只支持单个路径。当选择MEM做缓存时,需指定一个本地路径来存储Log等文件。
quota 表示缓存最大容量,单位GB。缓存容量可以根据UFS数据大小自行配置。
high 表示存储容量上限大小。
low 表示存储容量下限大小。
fuse.args 表示可选的fuse客户端挂载参数。通常与Dataset的访问模式搭配使用。当Dataset访问模式为ReadOnlyMany时,我们开启kernel_cache以利用内核缓存优化读性能。此时我们可以设置attr_timeout(文件属性缓存保留时间)、entry_timeout(文件名读取缓存保留时间)超时时间、negative_timeout(文件名读取失败缓存保留时间),默认均为7200s。当Dataset访问模式为ReadWriteMany时,我们建议使用默认配置。此时参数如下:- -oauto_cache- -oattr_timeout=0- -oentry_timeout=0- -onegative_timeout=0使用auto_cache以确保如果文件大小或修改时间发生变化,缓存就会失效。同时将超时时间都设置为0。


4. 执行以下命令,创建 JindoRuntime 和 Dataset。


$ kubectl create -f dataset.yaml


5. 执行以下命令,查看 Dataset 的部署情况。


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        0.00B       10.00GiB         0.0%                Bound   2m7s


步骤三:创建支持定时运行的 Dataload

1. 使用以下 YAML 文件样例创建一个名为 dataload.yaml 的文件。


apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
  name: cron-dataload
spec:
  dataset:
    name: demo
    namespace: default
  policy: Cron
  schedule: "*/2 * * * *" # Run every 2 min


相关参数解释如下表所示:


参数 说明
dataset 表示执行dataload的数据集name和namespace。
policy 表示执行策略,目前支持Once和Cron。这里创建定时dataload任务。
shcedule 表示触发dataload的策略。


scheule 使用以下 cron 格式:


# ┌───────────── 分钟 (0 - 59)
# │ ┌───────────── 小时 (0 - 23)
# │ │ ┌───────────── 月的某天 (1 - 31)
# │ │ │ ┌───────────── 月份 (1 - 12)
# │ │ │ │ ┌───────────── 周的某天 (0 - 6)(周日到周一;在某些系统上,7 也是星期日)
# │ │ │ │ │                          或者是 sun,mon,tue,web,thu,fri,sat
# │ │ │ │ │
# │ │ │ │ │
# * * * * *


同时,cron 支持下列运算符:


  • 逗号(,)表示列举,例如:1,3,4,7 * * * * 表示在每小时的 1、3、4、7 分时执行Dataload。
  • 连词符(-)表示范围,例如:1-6 * * * * 表示每小时的 1 到 6 分钟内,每分钟都执行一次。
  • 星号(*)代表任何可能的值。例如:在“小时域”里的星号等于是“每一个小时”。
  • 百分号(%) 表示“每"。例如:*%10 * * * * 表示每 10 分钟执行一次。
  • 斜杠 (/) 用于描述范围的增量。例如:*/2 * * * *表示每 2 分钟执行一次。


您也可以在这里查看更多信息。


Dataload 相关高级配置请参考如下配置文件:


apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
  name: cron-dataload
spec:
  dataset:
    name: demo
    namespace: default
  policy: Cron # including Once, Cron
  schedule: * * * * * # only set when policy is cron
  loadMetadata: true
  target:
    - path: <path1>
      replicas: 1
    - path: <path2>
      replicas: 2


相关参数解释如下表所示:


参数 说明
policy 表示dataload执行策略,包括[Once, Cron]。
schedule 表示cron使用的计划,只有policy为Cron时有效。
loadMetadata 表示在dataload前是否同步元数据。
target 表示dataload的目标,支持指定多个目标。
path 表示执行dataload的路径。
replicas 表示缓存的副本数。


6. 执行以下命令创建 Dataload。


$ kubectl apply -f dataload.yaml


7. 执行以下命令查看 Dataload 状态。


$ kubectl get dataload


预期输出:


NAME             DATASET   PHASE      AGE     DURATION
cron-dataload    demo      Complete   3m51s   2m12s


8. 等待 Dataload 状态为 Complete 后,执行以下命令查看当前 dataset 状态。


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        588.90KiB   10.00GiB         100.0%              Bound   5m50s


可以看出 oss 中文件已经全部加载到缓存。


步骤四:创建应用容器访问 OSS 中的数据

本文以创建一个应用容器访问上述文件以查看定时 Dataload 效果。


1. 使用以下 YAML 文件样例,创建名为 app.yaml 的文件。


apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
    - name: nginx
      image: nginx
      volumeMounts:
        - mountPath: /data
          name: demo-vol
  volumes:
    - name: demo-vol
      persistentVolumeClaim:
        claimName: demo


2. 执行以下命令创建应用容器。


$ kubectl create -f app.yaml


3. 等待应用容器就绪,执行以下命令查看 OSS 中的数据:


$ kubectl exec -it nginx -- ls -lh /data


预期输出:


total 589K
-rwxrwxr-x 1 root root 589K Jul 31 04:20 RELEASENOTES.md


4. 为了验证 dataload 定时更新底层文件效果,我们在定时 dataload 触发前修改 RELEASENOTES.md 内容并重新上传。


$ echo "hello, crondataload." >> RELEASENOTES.md


重新上传该文件到 oss。


$ ossutil cp RELEASENOTES.md oss://<bucket-name>/<path>/RELEASENOTES.md


5. 等待 dataload 任务触发。Dataload 任务完成时,执行以下命令查看 Dataload 作业运行情况:


$ kubectl describe dataload cron-dataload


预期输出:


...
Status:
  Conditions:
    Last Probe Time:       2023-07-31T04:30:07Z
    Last Transition Time:  2023-07-31T04:30:07Z
    Status:                True
    Type:                  Complete
  Duration:                5m54s
  Last Schedule Time:      2023-07-31T04:30:00Z
  Last Successful Time:    2023-07-31T04:30:07Z
  Phase:                   Complete
...


其中,Status 中 Last Schedule Time 为上一次 dataload 作业的调度时间,Last Successful Time 为上一次 dataload 作业的完成时间。


此时,可以执行以下命令查看当前 Dataset 状态:


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        1.15MiB     10.00GiB         100.0%              Bound   10m


可以看出更新后的文件也已经加载到了缓存。


6. 执行以下命令在应用容器中查看更新后的文件:


$ kubectl exec -it nginx -- tail /data/RELEASENOTES.md


预期输出:


  \<name\>hbase.config.read.zookeeper.config\</name\>
  \<value\>true\</value\>
  \<description\>
        Set to true to allow HBaseConfiguration to read the
        zoo.cfg file for ZooKeeper properties. Switching this to true
        is not recommended, since the functionality of reading ZK
        properties from a zoo.cfg file has been deprecated.
  \</description\>
\</property\>
hello, crondataload.


从最后一行可以看出,应用容器已经可以访问更新后的文件。


环境清理

当您不再使用该数据加速功能时,需要清理环境。

执行以下命令,删除 JindoRuntime 和应用容器。


$ kubectl delete -f app.yaml
$ kubectl delete -f dataset.yaml


总结


关于基于 ACK Fluid 的混合云优化数据访问的讨论先到这里告一段落,阿里云容器服务团队会和用户在这个场景下持续的迭代和优化,随着实践不断深入,这个系列也会持续更新。


相关链接:

[1] 创建 ACK Pro 版集群

https://help.aliyun.com/document_detail/176833.html#task-skz-qwk-qfb

[2] 安装云原生 AI 套件

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/deploy-the-cloud-native-ai-suite#task-2038811

[3] 容器服务管理控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2F

[4] 通过 kubectl 工具连接集群

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/obtain-the-kubeconfig-file-of-a-cluster-and-use-kubectl-to-connect-to-the-cluster#task-ubf-lhg-vdb

[5] 安装 ossutil

https://help.aliyun.com/zh/oss/developer-reference/install-ossutil#concept-303829

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
124 8
探索软件测试中的自动化框架选择与优化策略####
【10月更文挑战第21天】 本文深入剖析了软件测试领域面临的挑战,聚焦于自动化测试框架的选择与优化这一核心议题。不同于传统摘要的概述方式,本文将以一个虚拟案例“X项目”为线索,通过该项目从手动测试困境到自动化转型的成功历程,生动展现如何根据项目特性精准匹配自动化工具(如Selenium、Appium等),并结合CI/CD流程进行深度集成与持续优化,最终实现测试效率与质量的双重飞跃。读者将跟随“X项目”团队的视角,直观感受自动化框架选型的策略性思考及实践中的优化技巧,获得可借鉴的实战经验。 ####
47 0
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
190 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
优化现金流:CRM回款自动化的关键步骤
在当今商业环境中,CRM系统已成为企业与客户互动的核心平台。回款自动化作为其重要功能,通过集成支付平台、自动化发票生成、智能提醒和数据分析等手段,显著减少人工操作错误,加快资金周转,提升现金流管理能力,降低成本并增强客户满意度。这不仅提高了企业的财务效率,还增强了市场竞争力。企业应积极拥抱这一变革,优化CRM系统,实现财务管理的智能化,从而在竞争中占据有利地位。
Kubernetes Ingress:灵活的集群外部网络访问的利器
《Kubernetes Ingress:集群外部访问的利器-打造灵活的集群网络》介绍了如何通过Ingress实现Kubernetes集群的外部访问。前提条件是已拥有Kubernetes集群并安装了kubectl工具。文章详细讲解了Ingress的基本组成(Ingress Controller和资源对象),选择合适的版本,以及具体的安装步骤,如下载配置文件、部署Nginx Ingress Controller等。此外,还提供了常见问题的解决方案,例如镜像下载失败的应对措施。最后,通过部署示例应用展示了Ingress的实际使用方法。
70 2
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
【Docker最新版教程】一文带你快速入门Docker常见用法,实现容器编排和自动化部署上线项目
Docker快速入门到项目部署,MySQL部署+Nginx部署+docker自定义镜像+docker网络+DockerCompose项目实战一文搞定!
探索软件测试中的自动化框架选择与优化策略####
本文深入探讨了在软件测试领域,面对众多自动化测试框架时,如何根据项目特性、团队技能及长远规划做出最佳选择,并进一步阐述了优化这些框架以提升测试效率与质量的策略。通过对比分析主流自动化测试框架的优劣,结合具体案例,本文旨在为测试团队提供一套实用的框架选型与优化指南。 ####
探索自动化测试框架在敏捷开发中的应用与优化##
本文深入探讨了自动化测试框架在现代敏捷软件开发流程中的关键作用,分析了其面临的挑战及优化策略。通过对比传统测试方法,阐述了自动化测试如何加速软件迭代周期,提升产品质量,并针对实施过程中的常见问题提出了解决方案。旨在为读者提供一套高效、可扩展的自动化测试实践指南。 ##
58 9
自动化测试框架的构建与优化:提升软件交付效率的关键####
本文深入探讨了自动化测试框架的核心价值,通过对比传统手工测试方法的局限性,揭示了自动化测试在现代软件开发生命周期中的重要性。不同于常规摘要仅概述内容,本部分强调了自动化测试如何显著提高测试覆盖率、缩短测试周期、降低人力成本,并促进持续集成/持续部署(CI/CD)流程的实施,最终实现软件质量和开发效率的双重飞跃。通过具体案例分析,展示了从零开始构建自动化测试框架的策略与最佳实践,包括选择合适的工具、设计高效的测试用例结构、以及如何进行性能调优等关键步骤。此外,还讨论了在实施过程中可能遇到的挑战及应对策略,为读者提供了一套可操作的优化指南。 ####

相关产品

  • 容器服务Kubernetes版
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等