大数据Flink Transformation

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Flink Transformation

1 官网API列表

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/

整体来说,流式数据上的操作可以分为四类。

第一类是对于单条记录的操作,比如筛除掉不符合要求的记录(Filter 操作),或者将每条记录都做一个转换(Map 操作)

第二类是对多条记录的操作。比如说统计一个小时内的订单总成交量,就需要将一个小时内的所有订单记录的成交量加到一起。为了支持这种类型的操作,就得通过 Window 将需要的记录关联到一起进行处理

第三类是对多个流进行操作并转换为单个流。例如,多个流可以通过 Union、Join 或 Connect等操作合到一起。这些操作合并的逻辑不同,但是它们最终都会产生了一个新的统一的流,从而可以进行一些跨流的操作。

最后, DataStream 还支持与合并对称的拆分操作,即把一个流按一定规则拆分为多个流

(Split 操作),每个流是之前流的一个子集,这样我们就可以对不同的流作不同的处理。

2 基本操作-略

2.1 map

⚫ API

map:将函数作用在集合中的每一个元素上,并返回作用后的结果

2.2 flatMap

⚫ API

flatMap:将集合中的每个元素变成一个或多个元素,并返回扁平化之后的结果

2.3 keyBy

按照指定的key来对流中的数据进行分组,前面入门案例中已经演示过

注意:

流处理中没有groupBy,而是keyBy

2.4 filter

⚫ API

filter:按照指定的条件对集合中的元素进行过滤,过滤出返回true/符合条件的元素

2.5 sum

⚫ API

sum:按照指定的字段对集合中的元素进行求和

2.6 reduce

⚫ API

reduce:对集合中的元素进行聚合

2.7 代码演示

⚫ 需求:

对流数据中的单词进行统计,排除敏感词heihei

⚫ 代码演示

package cn.oldlu.transformation;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
 * Author oldlu
 * Desc
 */
public class TransformationDemo01 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.source
        DataStream<String> linesDS = env.socketTextStream("node1", 9999);
        //3.处理数据-transformation
        DataStream<String> wordsDS = linesDS.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                //value就是一行行的数据
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(word);//将切割处理的一个个的单词收集起来并返回
                }
            }
        });
        DataStream<String> filtedDS = wordsDS.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String value) throws Exception {
                return !value.equals("heihei");
            }
        });
        DataStream<Tuple2<String, Integer>> wordAndOnesDS = filtedDS.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                //value就是进来一个个的单词
                return Tuple2.of(value, 1);
            }
        });
        //KeyedStream<Tuple2<String, Integer>, Tuple> groupedDS = wordAndOnesDS.keyBy(0);
        KeyedStream<Tuple2<String, Integer>, String> groupedDS = wordAndOnesDS.keyBy(t -> t.f0);
        DataStream<Tuple2<String, Integer>> result1 = groupedDS.sum(1);
        DataStream<Tuple2<String, Integer>> result2 = groupedDS.reduce(new ReduceFunction<Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {
                return Tuple2.of(value1.f0, value1.f1 + value1.f1);
            }
        });
        //4.输出结果-sink
        result1.print("result1");
        result2.print("result2");
        //5.触发执行-execute
        env.execute();
    }
}

3 合并-拆分

3.1 union和connect

⚫ API

union:

union算子可以合并多个同类型的数据流,并生成同类型的数据流,即可以将多个DataStream[T]

合并为一个新的DataStream[T]。数据将按照先进先出(First In First Out)的模式合并,且不去

重。2b0c761d7b13486c8249c7199e1f321c.png

connect:

connect提供了和union类似的功能,用来连接两个数据流,它与union的区别在于:connect只能连接两个数据流,union可以连接多个数据流。connect所连接的两个数据流的数据类型可以不一致,union所连接的两个数据流的数据类型必须一致。

两个DataStream经过connect之后被转化为ConnectedStreams,ConnectedStreams会对两个流的数据应用不同的处理方法,且双流之间可以共享状态。066f2fc1325540d7a41a27320ec00419.png

⚫ 需求

将两个String类型的流进行union将一个String类型和一个Long类型的流进行connect

⚫ 代码实现

package cn.oldlu.transformation;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
/**
 * Author oldlu
 * Desc
 */
public class TransformationDemo02 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.Source
        DataStream<String> ds1 = env.fromElements("hadoop", "spark", "flink");
        DataStream<String> ds2 = env.fromElements("hadoop", "spark", "flink");
        DataStream<Long> ds3 = env.fromElements(1L, 2L, 3L);
        //3.Transformation
        DataStream<String> result1 = ds1.union(ds2);//合并但不去重 https://blog.csdn.net/valada/article/details/104367378
        ConnectedStreams<String, Long> tempResult = ds1.connect(ds3);
        //interface CoMapFunction<IN1, IN2, OUT>
        DataStream<String> result2 = tempResult.map(new CoMapFunction<String, Long, String>() {
            @Override
            public String map1(String value) throws Exception {
                return "String->String:" + value;
            }
            @Override
            public String map2(Long value) throws Exception {
                return "Long->String:" + value.toString();
            }
        });
        //4.Sink
        result1.print();
        result2.print();
        //5.execute
        env.execute();
    }
}

3.2 split、select和Side Outputs

⚫ API

Split就是将一个流分成多个流Select就是获取分流后对应的数据

注意:split函数已过期并移除

Side Outputs:可以使用process方法对流中数据进行处理,并针对不同的处理结果将数据收集到不同的OutputTag中

⚫ 需求:

对流中的数据按照奇数和偶数进行分流,并获取分流后的数据

⚫ 代码实现:

package cn.oldlu.transformation;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
/**
 * Author oldlu
 * Desc
 */
public class TransformationDemo03 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.Source
        DataStreamSource<Integer> ds = env.fromElements(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        //3.Transformation
        /*SplitStream<Integer> splitResult = ds.split(new OutputSelector<Integer>() {
            @Override
            public Iterable<String> select(Integer value) {
                //value是进来的数字
                if (value % 2 == 0) {
                    //偶数
                    ArrayList<String> list = new ArrayList<>();
                    list.add("偶数");
                    return list;
                } else {
                    //奇数
                    ArrayList<String> list = new ArrayList<>();
                    list.add("奇数");
                    return list;
                }
            }
        });
        DataStream<Integer> evenResult = splitResult.select("偶数");
        DataStream<Integer> oddResult = splitResult.select("奇数");*/
        //定义两个输出标签
        OutputTag<Integer> tag_even = new OutputTag<Integer>("偶数", TypeInformation.of(Integer.class));
        OutputTag<Integer> tag_odd = new OutputTag<Integer>("奇数"){};
        //对ds中的数据进行处理
        SingleOutputStreamOperator<Integer> tagResult = ds.process(new ProcessFunction<Integer, Integer>() {
            @Override
            public void processElement(Integer value, Context ctx, Collector<Integer> out) throws Exception {
                if (value % 2 == 0) {
                    //偶数
                    ctx.output(tag_even, value);
                } else {
                    //奇数
                    ctx.output(tag_odd, value);
                }
            }
        });
        //取出标记好的数据
        DataStream<Integer> evenResult = tagResult.getSideOutput(tag_even);
        DataStream<Integer> oddResult = tagResult.getSideOutput(tag_odd);
        //4.Sink
        evenResult.print("偶数");
        oddResult.print("奇数");
        //5.execute
        env.execute();
    }
}

4 分区

4.1 rebalance重平衡分区

⚫ API

类似于Spark中的repartition,但是功能更强大,可以直接解决数据倾斜

Flink也有数据倾斜的时候,比如当前有数据量大概10亿条数据需要处理,在处理过程中可能会发生如图所示的状况,出现了数据倾斜,其他3台机器执行完毕也要等待机器1执行完毕后才算整体将任务完成;

602b165be69b4a2fac3cbfef64892e80.png所以在实际的工作中,出现这种情况比较好的解决方案就是rebalance(内部使用round robin方法将数据均匀打散)cbfb0628fa7749b2b036042b17da0a98.png

⚫ 代码演示:

package cn.oldlu.transformation;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
 * Author oldlu
 * Desc
 */
public class TransformationDemo04 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC).setParallelism(3);
        //2.source
        DataStream<Long> longDS = env.fromSequence(0, 100);
        //3.Transformation
        //下面的操作相当于将数据随机分配一下,有可能出现数据倾斜
        DataStream<Long> filterDS = longDS.filter(new FilterFunction<Long>() {
            @Override
            public boolean filter(Long num) throws Exception {
                return num > 10;
            }
        });
        //接下来使用map操作,将数据转为(分区编号/子任务编号, 数据)
        //Rich表示多功能的,比MapFunction要多一些API可以供我们使用
        DataStream<Tuple2<Integer, Integer>> result1 = filterDS
                .map(new RichMapFunction<Long, Tuple2<Integer, Integer>>() {
                    @Override
                    public Tuple2<Integer, Integer> map(Long value) throws Exception {
                        //获取分区编号/子任务编号
                        int id = getRuntimeContext().getIndexOfThisSubtask();
                        return Tuple2.of(id, 1);
                    }
                }).keyBy(t -> t.f0).sum(1);
        DataStream<Tuple2<Integer, Integer>> result2 = filterDS.rebalance()
                .map(new RichMapFunction<Long, Tuple2<Integer, Integer>>() {
                    @Override
                    public Tuple2<Integer, Integer> map(Long value) throws Exception {
                        //获取分区编号/子任务编号
                        int id = getRuntimeContext().getIndexOfThisSubtask();
                        return Tuple2.of(id, 1);
                    }
                }).keyBy(t -> t.f0).sum(1);
        //4.sink
        //result1.print();//有可能出现数据倾斜
        result2.print();//在输出前进行了rebalance重分区平衡,解决了数据倾斜
        //5.execute
        env.execute();
    }
}

4.2 其他分区

⚫ API

说明:

recale分区。基于上下游Operator的并行度,将记录以循环的方式输出到下游Operator的每个实例。

举例:

上游并行度是2,下游是4,则上游一个并行度以循环的方式将记录输出到下游的两个并行度上;上游另一个并行度以循环的方式将记录输出到下游另两个并行度上。若上游并行度是4,下游并行度是2,则上游两个并行度将记录输出到下游一个并行度上;上游另两个并行度将记录输出到下游另一个并行度上。

⚫ 需求:

对流中的元素使用各种分区,并输出

⚫ 代码实现

package cn.oldlu.transformation;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
 * Author oldlu
 * Desc
 */
public class TransformationDemo05 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //2.Source
        DataStream<String> linesDS = env.readTextFile("data/input/words.txt");
        SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = linesDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });
        //3.Transformation
        DataStream<Tuple2<String, Integer>> result1 = tupleDS.global();
        DataStream<Tuple2<String, Integer>> result2 = tupleDS.broadcast();
        DataStream<Tuple2<String, Integer>> result3 = tupleDS.forward();
        DataStream<Tuple2<String, Integer>> result4 = tupleDS.shuffle();
        DataStream<Tuple2<String, Integer>> result5 = tupleDS.rebalance();
        DataStream<Tuple2<String, Integer>> result6 = tupleDS.rescale();
        DataStream<Tuple2<String, Integer>> result7 = tupleDS.partitionCustom(new Partitioner<String>() {
            @Override
            public int partition(String key, int numPartitions) {
                return key.equals("hello") ? 0 : 1;
            }
        }, t -> t.f0);
        //4.sink
        //result1.print();
        //result2.print();
        //result3.print();
        //result4.print();
        //result5.print();
        //result6.print();
        result7.print();
        //5.execute
        env.execute();
    }
}


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
191 2
ClickHouse与大数据生态集成:Spark & Flink 实战
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
183 56
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
82 1
|
3月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
98 1
|
3月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
140 0
|
3月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
152 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1487 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
1天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
Flink CDC 在阿里云实时计算Flink版的云上实践
|
15天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。