大数据Hadoop小文件问题与企业级解决方案

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Hadoop小文件问题与企业级解决方案

1 MapReduce性能优化

现在大家已经掌握了MapReduce程序的开发步骤,注意了,针对MapReduce的案例我们并没有讲太多,主要是因为在实际工作中真正需要我们去写MapReduce代码的场景已经是凤毛麟角了,因为后面我们会学习一个大数据框架Hive,Hive支持SQL,这个Hive底层会把SQL转化为MapReduce执行,不需要 我们写一行代码,所以说工作中的大部分需求我们都使用SQL去实现了,谁还苦巴巴的来写代码啊,一行SQL能抵你写的几十行代码,你还想去写MapReduce代码吗,肯定不想了。

但是MapReduce代码的开发毕竟是基本功,所以前面我们也详细的讲解了它的开发流程。

虽然现在MapReduce代码写的很少了,但是针对MapReduce程序的性能优化是少不了的,面试也是经

常会问到的,所以下面我们就来分析一下MapReduce中典型的性能优化场景

第一个场景是:小文件问题

第二个场景是:数据倾斜问题

2 小文件问题

先一个一个来,不要着急,我们先看小文件问题

咱们前面分析过,Hadoop的HDFS和MapReduce都是针对大数据文件来设计的,在小文件的处理上不但

效率低下,而且十分消耗内存资源针对HDFS而言,每一个小文件在namenode中都会占用150字节的内存空间,最终会导致集群中虽然存储了很多个文件,但是文件的体积并不大,这样就没有意义了。

针对MapReduce而言,每一个小文件都是一个Block,都会产生一个InputSplit,最终每一个小文件都会 产生一个map任务,这样会导致同时启动太多的Map任务,Map任务的启动是非常消耗性能的,但是启动了以后执行了很短时间就停止了,因为小文件的数据量太小了,这样就会造成任务执行消耗的时间还没有启动任务消耗的时间多,这样也会影响MapReduce执行的效率。

针对这个问题,解决办法通常是选择一个容器,将这些小文件组织起来统一存储,HDFS提供了两种类型的容器,分别是SequenceFile 和 MapFileSequeceFile是Hadoop 提供的一种二进制文件,这种二进制文件直接将<key, value>对序列化到文件中。

一般对小文件可以使用这种文件合并,即将小文件的文件名作为key,文件内容作为value序列化到大文

件中但是这个文件有一个缺点,就是它需要一个合并文件的过程,最终合并的文件会比较大,并且合并后的文件查看起来不方便,必须通过遍历才能查看里面的每一个小文件所以这个SequenceFile 其实可以理解为把很多小文件压缩成一个大的压缩包了。

下面我们来具体看一下如何生成SequenceFile

生成SequenceFile需要开发代码

import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.DefaultCodec;
import java.io.File;
/**
 * 小文件解决方案之SequenceFile
 */
public class SmallFileSeq {
    public static void main(String[] args) throws Exception {
        //生成SequenceFile文件
        write("D:\\smallFile", "/seqFile");
        //读取SequenceFile文件
        read("/seqFile");
    }
    /**
     * 生成SequenceFile文件
     *
     * @param inputDir   输入目录-windows目录
     * @param outputFile 输出文件-hdfs文件
     * @throws Exception
     */
    private static void write(String inputDir, String outputFile)
            throws Exception {
        //创建一个配置对象
        Configuration conf = new Configuration();
        //指定HDFS的地址
        conf.set("fs.defaultFS", "hdfs://bigdata01:9000");
        //获取操作HDFS的对象
        FileSystem fileSystem = FileSystem.get(conf);
        //删除输出文件
        fileSystem.delete(new Path(outputFile), true);
        //构造opts数组,有三个元素
 /*
 第一个是输出路径
 第二个是key类型
 第三个是value类型
 */
        SequenceFile.Writer.Option[] opts = new SequenceFile.Writer.Option[]{
                SequenceFile.Writer.file(new Path(outputFile)),
                SequenceFile.Writer.keyClass(Text.class),
                SequenceFile.Writer.valueClass(Text.class)};
        //创建一个writer实例
        SequenceFile.Writer writer = SequenceFile.createWriter(conf, opts);
        //指定要压缩的文件的目录
        File inputDirPath = new File(inputDir);
        if (inputDirPath.isDirectory()) {
            File[] files = inputDirPath.listFiles();
            for (File file : files) {
                //获取文件全部内容
                String content = FileUtils.readFileToString(file, "UTF-8");
                //文件名作为key
                Text key = new Text(file.getName());
                //文件内容作为value
                Text value = new Text(content);
                writer.append(key, value);
            }
        }
        writer.close();
    }
    *
    @param
    inputFile SequenceFile文件路径
 *@throws Exception
 */
    private static void read(String inputFile)
            throws Exception {
        //创建一个配置对象
        Configuration conf = new Configuration();
        //指定HDFS的地址
        conf.set("fs.defaultFS", "hdfs://bigdata01:9000");
        //创建阅读器
        SequenceFile.Reader reader = new SequenceFile.Reader(conf, SequenceFi
                Text key = new Text();
        Text value = new Text();
        //循环读取数据
        while (reader.next(key, value)) {
            //输出文件名称
            System.out.print("文件名:" + key.toString() + ",");
            //输出文件的内容
            System.out.println("文件内容:" + value.toString());
        }
        reader.close();
    }
}

执行代码中的write方法,可以看到在HDFS上会产生一个/seqFile文件,这个文件就是最终生成的大文件

执行代码中的read方法,可以输出小文件的名称和内容

接下来我们来看一下MapFile

MapFile是排序后的SequenceFile,MapFile由两部分组成,分别是index和data

index作为文件的数据索引,主要记录了每个Record的key值,以及该Record在文件中的偏移位置。

MapFile被访问的时候,索引文件会被加载到内存,通过索引映射关系可迅速定位到指定Record所在文件 位置,因此,相对SequenceFile而言,MapFile的检索效率是高效的,缺点是会消耗一部分内存来存储index数据。

代码实现如下:

package com.oldlu.mr;
import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.MapFile;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import java.io.File;
/**
 * 小文件解决方案之MapFile
 */
public class SmallFileMap {
    public static void main(String[] args) throws Exception{
        //生成MapFile文件
        write("D:\\smallFile","/mapFile");
        read("/mapFile");
    }
    /**
     * 生成MapFile文件
     * @param inputDir 输入目录-windows目录
     * @param outputDir 输出目录-hdfs目录
     * @throws Exception
     */
    private static void write(String inputDir,String outputDir)
            throws Exception{
        //创建一个配置对象
        Configuration conf = new Configuration();
        //指定HDFS的地址
        conf.set("fs.defaultFS","hdfs://bigdata01:9000");
        //获取操作HDFS的对象
        FileSystem fileSystem = FileSystem.get(conf);
        //删除输出目录
        fileSystem.delete(new Path(outputDir),true);
        //构造opts数组,有两个元素
 /*
 第一个是key类型
 第二个是value类型
 */
        SequenceFile.Writer.Option[] opts = new SequenceFile.Writer.Option[]{
                MapFile.Writer.keyClass(Text.class),
                MapFile.Writer.valueClass(Text.class)};
        //创建一个writer实例
        MapFile.Writer writer = new MapFile.Writer(conf,new Path(outputDir),o
                //指定要压缩的文件的目录
                File inputDirPath = new File(inputDir);
        if(inputDirPath.isDirectory()){
            File[] files = inputDirPath.listFiles();
            for (File file : files) {
                //获取文件全部内容
                String content = FileUtils.readFileToString(file, "UTF-8");
                //文件名作为key
                Text key = new Text(file.getName());
                //文件内容作为value
                Text value = new Text(content);
                writer.append(key,value);
            }
        }
        writer.close();
    }
    /**
     * 读取MapFile文件
     * @param inputDir MapFile文件路径
     * @throws Exception
     */
    private static void read(String inputDir)
            throws Exception{
        //创建一个配置对象
        Configuration conf = new Configuration();
        //指定HDFS的地址
        conf.set("fs.defaultFS","hdfs://bigdata01:9000");
        //创建阅读器
        MapFile.Reader reader = new MapFile.Reader(new Path(inputDir),conf);
        //循环读取数据
        while(reader.next(key,value)){
            //输出文件名称
            System.out.print("文件名:"+key.toString()+",");
            //输出文件的内容
            System.out.println("文件内容:"+value.toString());
        }
        reader.close();
    }
}

执行代码中的write方法,可以看到在HDFS上会产生一个/mapFile目录,这个目录里面有两个文件,一个

index索引文件,一个data数据文件

执行代码中的read方法,可以输出小文件的名称和内容

下面我们来看一个案例

我们来使用SequenceFile实现小文件的存储和计算

小文件的存储刚才我们已经通过代码实现了,接下来我们要实现如何通过MapReduce读取SequenceFile

咱们之前的代码默认只能读取普通文本文件,针对SequenceFile是无法读取的

那该如何设置才能让mapreduce可以读取SequenceFile呢?

很简单,只需要在job中设置输入数据处理类就行了,默认情况下使用的是TextInputFormat

创建一个新的类WordCountJobSeq

注意修改两个地方

  1. 修改job中的设置输入数据处理类
  2. 修改map中k1的数据类型为Text类型
job.setInputFormatClass(SequenceFileInputFormat.class)

创建一个新的类WordCountJobSeq

注意修改两个地方

  1. 修改job中的设置输入数据处理类
  2. 修改map中k1的数据类型为Text类型
    执行成功以后查看结果
package com.oldlu.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
/**
 * 需求:读取SequenceFile文件
 * Created by xuwei
 */
public class WordCountJobSeq {
    /**
     * public static class MyMapper extends Mapper<Text, Text,Text,LongWritable>
     * Logger logger = LoggerFactory.getLogger(MyMapper.class);
     * /**
     * 需要实现map函数
     * 这个map函数就是可以接收<k1,v1>,产生<k2,v2>
     *
     * @param k1
     * @param v1
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void map(Text k1, Text v1, Context context)
            throws IOException, InterruptedException {
        //输出k1,v1的值
        System.out.println("<k1,v1>=<" + k1.toString() + "," + v1.toString() + ">
                //logger.info("<k1,v1>=<"+k1.get()+","+v1.toString()+">");
                //k1 代表的是每一行数据的行首偏移量,v1代表的是每一行内容
                //对获取到的每一行数据进行切割,把单词切割出来
                String[]words = v1.toString().split(" ");
        //迭代切割出来的单词数据
        for (String word : words) {
            //把迭代出来的单词封装成<k2,v2>的形式
            Text k2 = new Text(word);
            LongWritable v2 = new LongWritable(1L);
            //把<k2,v2>写出去
            context.write(k2, v2);
        }
    }
}
/**
 * Reduce阶段
 */
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongW
 Logger logger =LoggerFactory.getLogger(MyReducer.class);
/**
 * 针对<k2,{v2...}>的数据进行累加求和,并且最终把数据转化为k3,v3写出去
 *
 * @param k2
 * @param v2s
 * @param context
 * @throws IOException
 * @throws InterruptedException
 */
@Override
protected void reduce(Text k2,Iterable<LongWritable> v2s,Context co
        throws IOException,InterruptedException{
        //创建一个sum变量,保存v2s的和
        long sum=0L;
        //对v2s中的数据进行累加求和
        for(LongWritable v2:v2s){
        //输出k2,v2的值
        //System.out.println("<k2,v2>=<"+k2.toString()+","+v2.get()+"
        //logger.info("<k2,v2>=<"+k2.toString()+","+v2.get()+">");
        sum+=v2.get();
        }
        //组装k3,v3
        Text k3=k2;
        LongWritable v3=new LongWritable(sum);
//输出k3,v3的值
//System.out.println("<k3,v3>=<"+k3.toString()+","+v3.get()+">");
//logger.info("<k3,v3>=<"+k3.toString()+","+v3.get()+">");
        context.write(k3,v3);
        }
        }
/**
 * 组装Job=Map+Reduce
 */
public static void main(String[]args){
        try{
        if(args.length!=2){
        //如果传递的参数不够,程序直接退出
        System.exit(100);
        }
        //指定Job需要的配置参数
        Configuration conf=new Configuration();
        //创建一个Job
        Job job=Job.getInstance(conf);
        //注意了:这一行必须设置,否则在集群中执行的时候是找不到WordCountJob这个
        job.setJarByClass(WordCountJobSeq.class);
        //指定输入路径(可以是文件,也可以是目录)
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        //指定输出路径(只能指定一个不存在的目录)
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
        //指定map相关的代码
        job.setMapperClass(MyMapper.class);
        //指定k2的类型
        job.setMapOutputKeyClass(Text.class);
        //指定v2的类型
        job.setMapOutputValueClass(LongWritable.class);
        //设置输入数据处理类
        job.setInputFormatClass(SequenceFileInputFormat.class);
        //指定reduce相关的代码
        job.setReducerClass(MyReducer.class);
        //指定k3的类型
        job.setOutputKeyClass(Text.class);
        //指定v3的类型
        job.setOutputValueClass(LongWritable.class);
        //提交job
        job.waitForCompletion(true);
        }catch(Exception e){
        e.printStackTrace();
        }
     }
 }

执行成功以后查看结果

[root@bigdata01 hadoop-3.2.0]# hdfs dfs -cat /out10/*
hello 10
you 10

此时到yarn的web界面上查看map任务的个数,发现只有1个,说明这样是生效的。

查看map任务的日志,查看打印的k1,v1日志信息

Log Type: stdout
Log Length: 301
<k1,v1>=<file1.txt,hello you>
<k1,v1>=<file10.txt,hello you>
<k1,v1>=<file2.txt,hello you>
<k1,v1>=<file3.txt,hello you>
<k1,v1>=<file4.txt,hello you>
<k1,v1>=<file5.txt,hello you>
<k1,v1>=<file6.txt,hello you>
<k1,v1>=<file7.txt,hello you>
<k1,v1>=<file8.txt,hello you>
<k1,v1>=<file9.txt,hello you>


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
195 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
83 2
|
8天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
36 4
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
117 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
86 1
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
83 1
|
2月前
|
JSON 分布式计算 大数据
大数据-85 Spark 集群 RDD创建 RDD-Action Key-Value RDD详解 RDD的文件输入输出
大数据-85 Spark 集群 RDD创建 RDD-Action Key-Value RDD详解 RDD的文件输入输出
42 1
|
1月前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
75 0
|
2月前
|
弹性计算 缓存 搜索推荐
大数据个性化推荐,AWS终端用户解决方案
大数据个性化推荐,AWS终端用户解决方案
|
2月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
169 0