阿里云大数据ACA及ACP复习题(251~260)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试。

251.在传统的大数据批处理系统中,以下哪些选项是MapReduce的优点?( ABC )
A:易于编程
B:良好扩展性
C:高容错性
D:高精度性

解析:优点: 1、易于编程。用户只关心业务逻辑,实现框架的接口。 2、良好的扩展性。可以动态增加服务器,解决计算资源资源不足问题。 3、高容错性。任何一台机器挂掉,可以将任务转移到其他节点。 4、适合海量数据计算(TB/PB),几千台服务器共同计算。

252.关于MapReduce的局限性,描述正确的是?( D )
A:代码简洁
B:支持实时计算
C:执行效率高
D:适合选代多次、交互式和流式处理

解析:MapReduce的执行速度慢。 MapReduce过于底层。 实时计算性、不能进行流式计算

253.下列选项中,哪一项描述的是Sqoop的应用场景?( A )
A:使用Sqoop将MySQL数据导入HDFS中
B:使用Sqoop将MySQL数据导入Oracle中
C:使用sqoop将Oracle数据导入阿里云的RDS MySQL中
D:使用sqoop将redis数据导入阿里云的RDSMySQL中

解析:使用Sqoop将MySQL数据导入HDFS中

254.使用Datav进行数据可视化开发的过程中,需要了解Datav的操作流程,下面那一项属于DataV正确的操作流程?( A )
A:准备工作一创建可视化应用一添加并配置可视化组件一调整组件图层位置一预览并发布可视化应用
B:准备工作一创建可视化应用一调整组件图层位置一添加并配置可视化组件一预览并发布可视化应用
C:添加并配置可视化组件一准备工作一调整组件图层位置一预并发布可视化应用
D:准备工作一调整组件图层位置一创建可视化应用一添加井配置可视化组件一预览并发布可视化应用

解析https://help.aliyun.com/apsara/enterprise/v_3_16_2_20220708/datav/ase-paas-user-guide/overview-1.html?spm=a2c4g.14484438.10001.12
1、准备工作。 2、创建可视化应用。 3、添加并配置可视化组件。 4、调整组件的图层和位置。 5、预览并发布可视化应用。

255.Flume是Hadoop生态圈的组件之一,关于Flume的组件功能,描述正确的是( C )
A:source负责接收日志数据,不支持不同类型和不同式的日志,所以需要对日志数据处理类型和格式
B:Source将日志教据的写入到Sink中并负责处理操作
C:sink负责从channel中的获取数据,写入到接收方
D:Sink可以获取接收方的数据

解析:Sink主要是从Channel中拉取数据、拉取日志信息,然后最后存放到了接收方 Source负责接收events或通过特殊机制产生events,并将events批量放到一个或多个Channels。有驱动和轮询2种类型的Source。

256.网络爬虫是一种通过既定规则,自动抓取网页信息的程序,它的常见分类有( ABCD )。
A:通用网络爬虫
B:聚集网络爬虫
C:增量式网络爬虫
D:深层网络爬虫
E:随机型爬虫

解析:网络爬虫按照系统结构和实现技术,大致可以分为以下几种类型:通用网络爬虫(General Purpose Web Crawler)、聚焦网络爬虫(Focused Web Crawler)、增量式网络爬虫(Incremental Web Crawler)、深层网络爬虫(Deep Web Crawler)。实际的网络爬虫系统通常是几种爬虫技术相结合实现的。

257.下列关于MaxCompute与Hologres的关系,描述正确的是 ( ABC )
A:在计算引擎方面,MoxCompute甚于Stage和File设计的,持久化的,可扩展SQL Engine 而Hologros甚于内存的,超快速响应的SQL Engine,计算不落盘
B:在集群方面,MdaxCompute共享大集群,而Hologres独享集群
C:在扩展性方面,MaxCompute几乎不受限制,而Hologres复杂查询尽量避免跨多节点数据shuffle
D:在接口标准方面,MaxCompute支持PostgreSQL,而Hologres支持MCSQL

解析https://developer.aliyun.com/article/871747 MaxCompute:共享大集群、基于Stage和File设计的,持久化的,可扩展SQLEngine、几乎不受限制、接口标准MCSQL。 Hologres:独享集群、复杂查询尽量避免跨多节点数据shuffle、基于内存的,超快速响应的SQLEngine,计算不落盘、接口标准PostgreSQL。

258.阿里云的云计算提供了多种服务模式,其中基础设施使用的是( C )
A:SaaS
B:Paas
C:laas
D:全部本地布署

解析:IaaS: Infrastructure-as-a-Service(基础设施即服务)

259.阿里云的机器学习平台提供了大量实用的算法,包括数据预处理方法,常用的“归一化”处理主要是( C )
A:把指定数据设置为1
B:把指定数据设置为平均值
C:对数据的线性变换,使结果值映射到[0-1]之间
D:对>1的数据设置为1

解析:归一化是将数据归纳到0-1之间,保证不同纲量的特征数据对结果的影响是一样的

260.k-means 如何选择聚类中心的个数( A )。
A:肘部法
B:依据过往其他项目经验,设置合适k值
C:如果数据量较大,设置为10
D:如果数据量小,设置为3

解析:不同问题,有不同的合适值,要通过肘部法来确定

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
15天前
|
存储 人工智能 数据管理
|
8天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
14天前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
42 4
|
22天前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
22天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
58 2
|
2月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据生态圈体系
阿里云大数据计算服务MaxCompute(原ODPS)提供大规模数据存储与计算,支持离线批处理。针对实时计算需求,阿里云推出Flink版。此外,阿里云还提供数据存储服务如OSS、Table Store、RDS和DRDS,以及数据分析平台DataWorks、Quick BI和机器学习平台PAI,构建全面的大数据生态系统。
88 18
|
17天前
|
SQL 存储 分布式计算
阿里云 Paimon + MaxCompute 极速体验
Paimon 和 MaxCompute 的对接经历了长期优化,解决了以往性能不足的问题。通过半年紧密合作,双方团队专门提升了 Paimon 在 MaxCompute 上的读写性能。主要改进包括:采用 Arrow 接口减少数据转换开销,内置 Paimon SDK 提升启动速度,实现原生读写能力,减少中间拷贝与转换,显著降低 CPU 开销与延迟。经过双十一实战验证,Paimon 表的读写速度已接近 MaxCompute 内表,远超传统外表。欢迎体验!
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
494 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
64 2
|
7天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试