Redis 的数据清理策略详解

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 背景摸清 Redis 的数据清理策略,给内存使用高的被动缓存场景,在遇到内存不足时怎么做是最优解提供决策依据。 本文整理 Redis 的数据清理策略所有代码来自 Redis version : 5.0, 不同版本的 Redis 策略可能有调整

背景
摸清 Redis 的数据清理策略,给内存使用高的被动缓存场景,在遇到内存不足时

怎么做是最优解提供决策依据。

本文整理 Redis 的数据清理策略所有代码来自 Redis version : 5.0, 不同版本的 Redis 策略可能有调整

清理策略
Redis 的清理策略,总结概括为三点,被动清理、定时清理、驱逐清理

被动清理
访问 Key 时,每次都会检查该 Key 是否已过期,如果过期则删除该 Key ,get 、scan 等指令都会触发 Key 的过期检查。

关键代码如下, expireIfNeeded (redisDb db, robj key) 函数会触发检查并删除

robj lookupKeyReadWithFlags(redisDb db, robj key, int flags) {
robj
val;

if (expireIfNeeded(db,key) == 1) {
    /* Key expired. If we are in the context of a master, expireIfNeeded()
     * returns 0 only when the key does not exist at all, so it's safe
     * to return NULL ASAP. */
    if (server.masterhost == NULL) {
        server.stat_keyspace_misses++;
        return NULL;
    }
    if (server.current_client &&
        server.current_client != server.master &&
        server.current_client->cmd &&
        server.current_client->cmd->flags & CMD_READONLY)
    {
        server.stat_keyspace_misses++;
        return NULL;
    }
}
val = lookupKey(db,key,flags);
if (val == NULL)
    server.stat_keyspace_misses++;
else
    server.stat_keyspace_hits++;
return val;

}
定时清理
通过 serverCron 定期触发清理,可以通过 hz 参数,配置每秒执行多少次清理任务,流程如下

1、Redis 配置项 hz 定义了 serverCron 任务的执行周期,默认为 10,即 CPU 空闲时每秒执行 10 次

2、每次过期 Key 清理的 timelimit 不超过 CPU 时间的 25% ,即若 hz = 1,则一次清理时间最大为 250ms,若 hz = 10,则一次清理时间最大为 25ms,计算逻辑(timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;)

3、清理时依次遍历所有的 db;

4、从 db 中随机取 20 个 key,判断是否过期,若过期,则逐出;

5、若有 5 个以上 key 过期,则重复步骤 4,否则遍历下一个 db;

6、在清理过程中,若达到了 timelimit 时间,退出清理过程;

关键代码如下,activeExpireCycle (int type) 会执行上述逻辑

int serverCron(struct aeEventLoop eventLoop, long long id, void clientData) {
...
databasesCron();
...
}

void databasesCron(void) {
/* Expire keys by random sampling. Not required for slaves

 * as master will synthesize DELs for us. */
if (server.active_expire_enabled) {
    if (server.masterhost == NULL) {
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
    } else {
        expireSlaveKeys();
    }
}
...

}
ps: activeExpireCycle 还会在主事件循环 eventLoop 中被调用,此时 type = ACTIVE_EXPIRE_CYCLE_FAST, 控制了最多执行 timelimit = 1000us 的快速清理,也会删除部分 Key 。

驱逐清理
Redis 在命令处理函数 processCommand 会进行内存的检查和驱逐,任何命令都会出触发,包括 ping 命令。

如果配置了 maxmemory ,且当前内存超过 maxmemory 时,则会执行 maxmemory_policy 筛选出需要清理的 Key,继而判断 lazyfree-lazy-eviction 是否开启来进行 Key 的同步还是异步删除。无论是同步删除还是异步删除,最后都会继续校验内存是否超限,直到内存低于 maxmemory。驱逐只会在 Master 节点进行。

maxmemory_policy 可选如下:

volatile-lru:从已设置过期时间的数据集中挑选【最近最少使用】的 Key 进行删除

volatile-ttl:从己设置过期时间的数据集中挑选【将要过期】的 Key 进行删除

volatile-lfu:从己设置过期时间的数据集中选择【最不常用】的 Key 进行删除

volatile-random:从己设置过期时间的数据集中【任意选择】Key 进行删除

allkeys-lru:从数据集中挑选【最近最少使用】的 Key 进行删除

allkeys-lfu:从数据集中【优先删除掉最不常用】的 Key

allkeys-random:从数据集中【任意选择】 Key 进行删除

no-enviction:禁止驱逐数据

如上图,6.2 后的版本支持通过逐出因子 maxmemory-eviction-tenacity 来控制逐出阻塞的时间。具体的阻塞耗时间可以通过 latency-monitor 里的 eviction-cycle、eviction-del 来观测。

关键代码如下,freeMemoryIfNeeded () 函数会执行上述逻辑

int processCommand(client *c) {
...
if (server.maxmemory && !server.lua_timedout) {
int out_of_memory = freeMemoryIfNeededAndSafe() == C_ERR;
...
}
...
}

int freeMemoryIfNeededAndSafe(void) {
if (server.lua_timedout || server.loading) return C_OK;
return freeMemoryIfNeeded();
}
ps: 当触发 aof 文件重写,fork 操作会阻塞主进程,此时积压的指令需要的内存,在 fork 结束后,需要一次性 eviction 出来,这时的 eviction-cycle 耗时会恶化的很严重,达到秒级的阻塞,此时可通过 latency-monitor 观测 eviction-cycle 、fork 总是成对出现。

总结
回到开篇的背景问题,当遇到内存使用高的被动缓存场景,可用内存不足时:

离线分析内存,是否存在大量【已过期】的内存来不及定时清理,此时可调大 hz 参数来加速过期内存的主动清理。hz 参数最大 500 ,不过要观察 CPU 的影响,不要因为 hz 影响读写流量

如果调整 hz 还是没法及时清理已过期的内存,则可以使用 scan 指令来被动访问 key 的方式手动删除,注意执行 scan 时的 count ,同时观测 CPU 使用情况,scan 的 count 越大,CPU 消耗会越高,完成一次 sacn 删除的时间最快。为了减少对线上的影响,可以在业务低峰期,周期性的执行。

通过 latency-monitor 观测 eviction-cycle、eviction-del 指标,是否因内存驱逐阻塞严重,可开启 lazyfree-lazy-eviction 来缓解阻塞。

业务上可以考虑关闭 aof 的影响,关闭 aof 可以减少驱逐清理 eviction-cycle 延迟带来的读写超时影响。

可升级到 7.x 版本的 Redis ,通过 maxmemory-eviction-tenacity 参数主动控制每次驱逐的阻塞时间

如果还是很慢,可考虑升级内存规格

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
179 16
|
16天前
|
缓存 NoSQL Redis
Redis经典问题:数据并发竞争
数据并发竞争是大流量系统(如火车票系统、微博平台)中常见的问题,可能导致用户体验下降甚至系统崩溃。本文介绍了两种解决方案:1) 加写回操作加互斥锁,查询失败快速返回默认值;2) 保持多个缓存备份,减少并发竞争概率。通过实践案例展示,成功提高了系统的稳定性和性能。
|
16天前
|
缓存 监控 NoSQL
Redis经典问题:数据不一致
在使用Redis时,缓存与数据库数据不一致会导致应用异常。主要原因包括缓存更新失败、Rehash异常等。解决方案有:重试机制、缩短缓存时间、优化写入策略、建立监控报警、定期验证一致性、采用缓存分层及数据回滚恢复机制。这些措施可确保数据最终一致性,提升应用稳定性和性能。
|
1月前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
43 5
|
1月前
|
NoSQL 安全 Redis
redis持久化策略
Redis 提供了两种主要的持久化策略:RDB(Redis DataBase)和AOF(Append Only File)。RDB通过定期快照将内存数据保存为二进制文件,适用于快速备份与恢复,但可能因定期保存导致数据丢失。AOF则通过记录所有写操作来确保数据安全性,适合频繁写入场景,但文件较大且恢复速度较慢。两者结合使用可增强数据持久性和恢复能力,同时Redis还支持复制功能提升数据可用性和容错性。
57 5
|
2月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
75 14
|
2月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
61 13
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
46 5
|
2月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
56 11
|
2月前
|
监控 NoSQL 测试技术
【赵渝强老师】Redis的AOF数据持久化
Redis 是内存数据库,提供数据持久化功能,支持 RDB 和 AOF 两种方式。AOF 以日志形式记录每个写操作,支持定期重写以压缩文件。默认情况下,AOF 功能关闭,需在 `redis.conf` 中启用。通过 `info` 命令可监控 AOF 状态。AOF 重写功能可有效控制文件大小,避免性能下降。