用python做测试实现高性能测试工具(1)—序

简介:
做过几年开发或者 测试开发的人员,时常会觉得很迷茫,新功能的开发或者老功能的维护,基本是在堆代码了, 做过几年测试的朋友也会有类似的想法。性能调优或者 性能测试的确很考验人分析问题、解决问题的能力,知识是否全面。本人也是第一次实现高性能的 测试工具, 记录下这次diameter协议测试工具的优化过程,供大家一起 学习。 有些内容涉及到具体产品,做了些改动或者单独写了测试代码演示。
   Python用来开发高性能的测试工具的确有天然的缺陷,性能差还有GIL,无法利用多线程。 但办法总比困难多,那么多大的 互联网公司都使用python与实际产品中,总比我们测试的性能要求搞多了。 本文主要讲述在系统设计和架构方面的性能优化,具体算法和一些小细节的优化,请参考 http://blog.csdn.net/powerccna/article/details/8020289
  项目背景:
  实现个高性能的diameter 测试工具, 接受1000+发送1000,双向要支持到2000条消息每秒。 diameter 协议的源代码是从这里下载的 http://sourceforge.net/projects/pyprotosim/, 这个开源包还支持SMPP, RADIUS, DHCP, LDAP,  而且新增加的协议字段都可以在dictionary配置属性,不需要修改代码,实在是方便。 初始阶段我们为了实现功能,没有怎么考虑性能的问题,很多地方用的是单线程,初始性能只能支持到50 消息。硬件环境: SunFire 4170, 16 核,每核2.4 G
   Python性能优化的几个方向:
   1. 换python的解析器:常见的python解析器有pysco,pypy, cython, jython, pysco已经对python 2.7不支持了,就没有测试,据说跑的很C语言一样快。对pypy, jython做了简单测试,pypy在不同机器上可以提高到5-10倍的样子,Jython虽然可以避免python GIL的问题(因为jython是跑在 java虚拟机上的),但测试看来,效率提升很少。
   2. 优化代码
  3. 改变系统架构,多线程,多进程或者协程
   方案1:  换Python解析器
  如果换Python解析器能达到性能需求是最廉价的方案了,不需要对代码做任何改动。下面代码只是为了说明pypy的效果,单独写的测试代码,在windows下运行的结果。在linux下机器上运行效果会更好些。
#!/usr/bin/env python
#coding=utf-8
import  time
def check(num):
a = list(str(num))
b = a[::-1]
if a == b:
return True
return False
def  test():
all = xrange(1,10**7)
for i in all:
if check(i):
if check(i**2):
i**2
if __name__ == '__main__':
start=time.time()
test()
print time.time()-start
分别用python和pypy的运行结果
C:\Python27\python.exeD:/RCC/mp/src/test.py
14.4940001965
C:\pypy-2.1\pypy.exeD:/RCC/mp/src/test.py
4.37800002098
  可以看出来pypy的运行结果效果还是明显的,虽然能提高5倍(linux机器上),50*5, 离2000还差好远。 pypy对python 多线程的支持没有明显效果,这个在后面会提到。

最新内容请见作者的GitHub页:http://qaseven.github.io/

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
82 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
5月前
|
安全 Linux 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
101 2
|
5月前
|
Python Windows 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
119 2
|
3月前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
514 2
|
3月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
4月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
98 1
|
4月前
|
Web App开发 测试技术 数据安全/隐私保护
自动化测试的魔法:使用Python进行Web应用测试
【10月更文挑战第32天】本文将带你走进自动化测试的世界,通过Python和Selenium库的力量,展示如何轻松对Web应用进行自动化测试。我们将一起探索编写简单而强大的测试脚本的秘诀,并理解如何利用这些脚本来确保我们的软件质量。无论你是测试新手还是希望提升自动化测试技能的开发者,这篇文章都将为你打开一扇门,让你看到自动化测试不仅可行,而且充满乐趣。
|
5月前
|
测试技术 数据安全/隐私保护 开发者
自动化测试的奥秘:如何用Selenium和Python提升软件质量
【9月更文挑战第35天】在软件开发的海洋中,自动化测试是那艘能引领我们穿越波涛的帆船。本文将揭开自动化测试的神秘面纱,以Selenium和Python为工具,展示如何构建一个简单而强大的自动化测试框架。我们将从基础出发,逐步深入到高级应用,让读者能够理解并实现自动化测试脚本,从而提升软件的质量与可靠性。
|
6月前
|
Web App开发 测试技术 持续交付
自动化测试的利器:Selenium与Python的完美结合
【9月更文挑战第21天】在软件开发的世界里,测试是确保产品质量的关键步骤。随着敏捷开发和持续集成的流行,自动化测试工具变得尤为重要。本文将介绍如何使用Selenium和Python进行高效的自动化测试,不仅提供代码示例,还深入探讨如何设计测试用例、选择正确的测试框架、以及如何整合到CI/CD流程中。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和实用的技巧。
96 3
|
6月前
|
安全 JavaScript 前端开发
自动化测试的魔法:如何用Python编写你的第一个测试脚本
【8月更文挑战第41天】在软件的世界里,质量是王道。而自动化测试,就像是维护这个王国的骑士,确保我们的软件产品坚不可摧。本文将引导你进入自动化测试的奇妙世界,教你如何使用Python这把强大的魔法杖,编写出能够守护你代码安全的第一道防护咒语。让我们一起开启这场魔法之旅吧!