数据通信网络之IPv6以太网多层交换

简介: 数据通信网络之IPv6以太网多层交换

文章及资源归档至公众号【AIShareLab】,回复 通信系统与网络 可获取。

一、目的

  1. 掌握 VLAN 的基础配置。
  2. 掌握 Trunk 的基础配置。
  3. 掌握 VLANIF 的基础配置,并理解通过三层交换机实现 VLAN 之间通信的方案。

二、环境及网络拓扑

本实验模拟一个典型的简单园区网络,如图 1 所示,其中,CoreSwitch 是园区网络的核 心交换机,AS1 和 AS2 是两台接入交换机。AS1 及 AS2 各自连接着一些终端 PC,出于二 层隔离的目的,我们将这些 PC 规划在了不同的 VLAN。所有 PC 的默认网关均在CoreSwitch 上。其中,接入交换机 AS1 和 AS2 及核心交换机 Coreswitch 均推荐使用 S5700 及以上设备。
在这里插入图片描述

图1 网络拓扑图
备注:实际组网时,考虑实验室设备配置情况,AS1、AS2 及Coreswitch 均可考虑使用S3700,S3700 默认的端口包含 24 个快速以太网口(接口视图中显示依次为 Ethernet0/0/1-Ethernet0/0/24)和 4 个吉比特以太网口(目前启用为面板上 Console 口左侧上下两个电口,面板亮灯对应接口序号分别为 27 和 28,接口视图中显示分别为 GigabitEthernet0/0/3 和GigabitEthernet0/0/4),相较于图 1 所示模拟实验中 Coreswitch 采用 S5700 的组网方式,实验时交换机接口 GE0/0/0-2 分别变更为 Ethernet0/0/0-2,GE0/0/23-24 变更为 Ethernet13-14,GE0/0/20 变更为Ethernet0/0/20。AS1 和AS2 的GE0/0/1-2 相应变更为Ethernet0/0/1-2,AS1的GE0/0/23 变更为GE0/0/1,AS2 的GE0/0/24 变更为GE0/0/4。

三、需求

按照网络规划,完成AS1、AS2 及CoreSwitch 的配置,使得PC1、PC2 及PC3 之间能
够相互通信。在本例中,PC1、PC2 及PC3 均属于不同的VLAN,彼此二层隔离,但是又存
在三层通信的需求,为了实现这个目的,需要在CoreSwitch 上配置VLANIF 接口,接口的
地址将作为PC 的默认网关。

四、步骤

(1)在 AS1 上创建相关 VLAN,并完成接口配置
在 AS1 上完成如下配置:

<Huawei> system-view 
[Huawei] sysname AS1 
[AS1] vlan batch 10 20 
[AS1] interface GigabitEthernet 0/0/1 
[AS1-GigabitEthernet0/0/1] port link-type access 
[AS1-GigabitEthernet0/0/1] port default vlan 10 
[AS1-GigabitEthernet0/0/1] quit 
[AS1] interface GigabitEthernet 0/0/2 
[AS1-GigabitEthernet0/0/2] port link-type access 
[AS1-GigabitEthernet0/0/2] port default vlan 20 
[AS1-GigabitEthernet0/0/2] quit

在这里插入图片描述

图2 配置AS1过程
在本实验中,AS1 的 GE0/0/23 接口连接着 CoreSwitch,该接口需要让 PC1 及 PC2 到达 CoreSwitch 的二层流量通行,也即该接口需要转发 VLAN10 及 VLAN20 的数据帧,为了让 CoreSwitch 能够识别本端发送的数据帧属于哪个 VLAN,该接口需要对这两个 VLAN 的数 据帧进行标记,为了达到这个目的,我们将这个接口配置为 Trunk 类型,并且放通 VLAN10 及 VLAN20。
在 AS1 上完成如下配置:

[AS1] interface GigabitEthernet 0/0/23 
[AS1-GigabitEthernet0/0/23] port link-type trunk 
[AS1-GigabitEthernet0/0/23] port trunk allow-pass vlan 10 20 
[AS1-GigabitEthernet0/0/23] quit

在这里插入图片描述

图3 配置AS1过程
VLAN。阶段性验证:
⑴在 AS1 系统视图下执行 display vlan 命令,查看 AS1 上的 VLAN 信息并展示结果,验证当前AS1是否已成功创建 VLAN10 和 VLAN20 并确认各接口与 VLAN 的所属关系。
在这里插入图片描述

图4 执行 display vlan 命令
实验验证结果如图4,可知AS1 已成功创建 VLAN10 和 VLAN20,接口1和接口23属于VLAN10,接口2和接口23属于VLAN20。
⑵在 AS1 系统视图下执行 display port vlan 命令,查看 AS1 接口 VLAN 信息并展示结果,验证各接口是否正确归属于所划分的 VLAN。
在这里插入图片描述

图5 执行 display port vlan 命令
验证结果如图5,可知各接口正确归属于所划分的 VLAN。
(2)在 AS2 上创建相关 VLAN,并完成接口配置
在 AS2 上完成如下配置:

<Huawei> system-view 
[Huawei] sysname AS2 
[AS2] vlan batch 30 
[AS2] interface GigabitEthernet 0/0/1 
[AS2-GigabitEthernet0/0/1] port link-type access 
[AS2-GigabitEthernet0/0/1] port default vlan 30 
[AS2-GigabitEthernet0/0/1] quit 
[AS2] interface GigabitEthernet 0/0/24 
[AS2-GigabitEthernet0/0/24] port link-type trunk 
[AS2-GigabitEthernet0/0/24] port trunk allow-pass vlan 30 
[AS2-GigabitEthernet0/0/24] quit

在这里插入图片描述

图6 配置AS2过程

阶段性验证:
⑴在 AS2 系统视图下执行 display vlan 命令,查看 AS2 上的 VLAN 信息并展示结果,验证当前 AS2 是否已成功创建 VLAN30 并确认各接口与 VLAN 的所属关系。
在这里插入图片描述

图7 执行 display vlan 命令
实验验证结果如图7,AS2 已成功创建 VLAN30,接口1和接口24属于VLAN30。
⑵在 AS2 系统视图下执行 display port vlan 命令,查看 AS2 接口 VLAN 信息并展示结果,验证各接口是否正确归属于所划分的 VLAN。
在这里插入图片描述

图8 执行 display port vlan 命令
实验验证结果如图8,各接口正确归属于所划分的 VLAN。
(3)在 CoreSwitch 上创建相关 VLAN,完成接口配置,并配置 VLANIF,实现 VLAN 间通信
CoreSwitch 的 VLAN 及接口配置如下:

<Huawei> system-view 
[Huawei] sysname CoreSwitch 
[CoreSwitch] vlan batch 10 20 30 
[CoreSwitch] interface GigabitEthernet 0/0/23 
[CoreSwitch-GigabitEthernet0/0/23] port link-type trunk 
[CoreSwitch-GigabitEthernet0/0/23] port trunk allow-pass vlan 
10 20 
[CoreSwitch-GigabitEthernet0/0/23] quit 
[CoreSwitch] interface GigabitEthernet 0/0/24 
[CoreSwitch-GigabitEthernet0/0/24] port link-type trunk [CoreSwitch-GigabitEthernet0/0/24] port trunk allow-pass vlan 
30 
[CoreSwitch-GigabitEthernet0/0/24] quit

在这里插入图片描述

图9 在 CoreSwitch 上创建相关 VLAN
接下来配置 VLANIF:

[CoreSwitch] ipv6 
[CoreSwitch] interface Vlanif 10 
[CoreSwitch-Vlanif10] ipv6 enable 
[CoreSwitch-Vlanif10] ipv6 address FC00:10::FFFF 64 
[CoreSwitch-Vlanif10] quit 
[CoreSwitch] interface Vlanif 20 
[CoreSwitch-Vlanif20] ipv6 enable 
[CoreSwitch-Vlanif20] ipv6 address FC00:20::FFFF 64 
[CoreSwitch-Vlanif20] quit 
[CoreSwitch] interface Vlanif 30 
[CoreSwitch-Vlanif30] ipv6 enable 
[CoreSwitch-Vlanif30] ipv6 address FC00:30::FFFF 64 
[CoreSwitch-Vlanif30] quit

在这里插入图片描述
图10 配置CoreSwitch 的 VLANIF

备注:在以上配置中,ipv6 命令用于在交换机上全局激活IPv6 功能。然后,interface Vlanif10 命令用于创建VLAN10 对应的三层VLANIF 接口,并进入接口的配置视图,接下来我们在接口上激活了IPv6 功能,并配置了IPv6 地址。VLANIF10 直接能够与VLAN10内的其他节点,包括PC1 进行互通,VLANIF20 及VLANIF30 同理。

(4)在 PC1、PC2 及 PC3 上完成静态地址配置
静态配置 PC1、PC2 及 PC3 的 IPv6 地址、前缀长度及网关信息,具体的参数如图1所示。
在这里插入图片描述

图11 配置PC1过程
在这里插入图片描述

图12 配置PC2过程
在这里插入图片描述

图13 配置PC3过程

(5)联通性测试
⑴在 PC1 上 ping PC2,具体命令格式为 ping PC2 的 IPv6 地址 -6,验证 PC1 是否可与 PC2成功通信。
在这里插入图片描述

图14 PC1 ping PC2
验证结果如图14所示,PC1 可与 PC2成功通信。
⑵在 PC1 上 ping PC3,具体命令格式为 ping PC3 的 IPv6 地址 -6,验证 PC1 是否可与 PC3成功通信。
在这里插入图片描述

图15 PC1 ping PC3
验证结果如图15所示,PC1 可与 PC3成功通信。
回答下列问题:
在本例中,PC1 与 PC2 连接在同一台二层交换机 AS1 上,如果给这两台 PC 配置相同网段的 IPv6 地址,二者是否能够不经过 CoreSwitch 直接通信?为什么?请通过实验验证,给出结果。

答:例如我先将CoreSwitch环境停止,如图16所示:
在这里插入图片描述

图16 停止 CoreSwitch环境
在这里插入图片描述

图17 修改PC2 IPV6地址
在这里插入图片描述

图18 PC1 ping PC2结果
然后如图17修改PC2的 IPv6 地址,使其与PC1配置相同网段,然后执行PC1 ping PC2指令,发现二者不能不经过 CoreSwitch 直接通信。因为PC1和PC2隶属于不同VLAN并且连接到同一个二层交换机AS1上,即使它们配置了相同网段的IPv6地址,它们也不能直接通信。

目录
相关文章
|
3天前
|
网络协议
网络工程师必看 | 某高校实验作业:以太网帧分析
网络工程师必看 | 某高校实验作业:以太网帧分析
|
3天前
|
网络协议 网络架构
网络工程师如何配置6to4隧道解决IPv6过渡问题(含动图)?
网络工程师如何配置6to4隧道解决IPv6过渡问题(含动图)?
|
30天前
|
网络协议 算法 程序员
网络必修课:以太网报文格式详解
嗨,大家好!今天,我要带大家深入了解以太网报文格式,这是现代网络通信的重要基础。无论你是网络工程师、开发者,还是对技术感兴趣的朋友,这篇文章都将为你揭开以太网的神秘面纱,让你更好地理解和应用这一关键技术。准备好了吗?让我们开始吧!
39 4
|
1月前
|
运维 网络协议 网络安全
2023网络建设与运维正式赛卷-交换配置
【7月更文挑战第3天】某集团构建了两地三中心网络架构,包括两个数据中心和异地灾备中心,使用OSPF、RIP、ISIS、BGP协议互联。核心设备包括SW1、SW2(数据中心)、SW3(灾备及办事处),以及FW1(总司防火墙)、FW2(办事处防火墙)等。网络拓扑涉及多个VLAN和IP地址段,SW3配置了VRF隔离办事处和Internet流量。SW1配置SNMPv3用于监控,并设置流量镜像。链路故障检测和LLDP启用以确保网络健康。
|
2月前
|
运维 网络安全 网络虚拟化
2024网络建设与运维赛题-交换配置教程
SW1, SW2, SW3作为核心交换机,配置了多个VLAN以隔离不同部门的网络,如产品、营销、财务和行政。配置中还包括启用VLAN访问控制,允许特定VLAN通过二层链路,并设置了链路聚合(LACP)以增强SW1和SW2之间的连接可靠性。此外,所有交换机都配置了IP VRF来支持分公司(Branch,RD 1:1)和Internet(RD 2:2)的虚拟专用网络。
2024网络建设与运维赛题-交换配置教程
|
1月前
|
运维 网络协议 网络安全
2023网络建设与运维正式赛卷-交换配置-上
【7月更文挑战第2天】该集团进行数字化转型,构建了两地三中心网络架构,包括两个数据中心和一个异地灾备中心。网络使用OSPF、RIP、ISIS、BGP协议互联,并设有多台交换机、路由器、防火墙和无线控制器。例如,SW1和SW2为核心交换机,SW3为灾备DC的核心交换机,FW1为总公司防火墙,FW2为办事处防火墙,RT1和RT2为路由器,AC1为有线无线控制器。配置中涉及VLAN隔离、端口访问控制、LACP聚合、负载均衡和IPSec VPN,以确保网络稳定性、安全性和可扩展性。已完成的配置需通过客户端测试验证功能正常。
|
1月前
|
人工智能 缓存 网络协议
网络层之三层交换、icmp协议、arp协议
网络层之三层交换、icmp协议、arp协议
|
2月前
|
存储 网络协议 网络安全
逆向学习网络篇:数据传输和交换过程
逆向学习网络篇:数据传输和交换过程
15 0
|
2月前
|
安全 网络协议 网络安全
以太网交换安全
以太网交换安全
|
2月前
|
网络协议 网络架构
以太网交换基础
以太网交换基础