最全的二叉树算法总结,30道题搞定大厂算法面试(三)

简介: 最全的二叉树算法总结,30道题搞定大厂算法面试

BST


二叉查找树(BST):根节点大于等于左子树所有节点,小于等于右子树所有节点。


二叉查找树中序遍历有序。


1. 修剪二叉查找树


669. Trim a Binary Search Tree (Easy)


Leetcode / 力扣


Input:
    3
   / \
  0   4
   \
    2
   /
  1
  L = 1
  R = 3
Output:
      3
     /
   2
  /
 1


题目描述:只保留值在 L ~ R 之间的节点


public TreeNode trimBST(TreeNode root, int L, int R) {
    if (root == null) return null;
    if (root.val > R) return trimBST(root.left, L, R);
    if (root.val < L) return trimBST(root.right, L, R);
    root.left = trimBST(root.left, L, R);
    root.right = trimBST(root.right, L, R);
    return root;
}


2. 寻找二叉查找树的第 k 个元素


230. Kth Smallest Element in a BST (Medium)


Leetcode / 力扣


中序遍历解法:


private int cnt = 0;
private int val;
public int kthSmallest(TreeNode root, int k) {
    inOrder(root, k);
    return val;
}
private void inOrder(TreeNode node, int k) {
    if (node == null) return;
    inOrder(node.left, k);
    cnt++;
    if (cnt == k) {
        val = node.val;
        return;
    }
    inOrder(node.right, k);
}


递归解法:


public int kthSmallest(TreeNode root, int k) {
    int leftCnt = count(root.left);
    if (leftCnt == k - 1) return root.val;
    if (leftCnt > k - 1) return kthSmallest(root.left, k);
    return kthSmallest(root.right, k - leftCnt - 1);
}
private int count(TreeNode node) {
    if (node == null) return 0;
    return 1 + count(node.left) + count(node.right);
}


3. 把二叉查找树每个节点的值都加上比它大的节点的值


Convert BST to Greater Tree (Easy)


Leetcode / 力扣


Input: The root of a Binary Search Tree like this:
              5
            /   \
           2     13
Output: The root of a Greater Tree like this:
             18
            /   \
          20     13


先遍历右子树。


private int sum = 0;
public TreeNode convertBST(TreeNode root) {
    traver(root);
    return root;
}
private void traver(TreeNode node) {
    if (node == null) return;
    traver(node.right);
    sum += node.val;
    node.val = sum;
    traver(node.left);
}


4. 二叉查找树的最近公共祖先


235. Lowest Common Ancestor of a Binary Search Tree (Easy)


Leetcode / 力扣


_______6______
      /                \
  ___2__             ___8__
 /      \           /      \
0        4         7        9
        /  \
       3   5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.


public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
    if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
    return root;
}


5. 二叉树的最近公共祖先


236. Lowest Common Ancestor of a Binary Tree (Medium)


Leetcode / 力扣


_______3______
      /              \
  ___5__           ___1__
 /      \         /      \
6        2       0        8
        /  \
       7    4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root == null || root == p || root == q) return root;
    TreeNode left = lowestCommonAncestor(root.left, p, q);
    TreeNode right = lowestCommonAncestor(root.right, p, q);
    return left == null ? right : right == null ? left : root;
}


6. 从有序数组中构造二叉查找树


108. Convert Sorted Array to Binary Search Tree (Easy)


Leetcode / 力扣


public TreeNode sortedArrayToBST(int[] nums) {
    return toBST(nums, 0, nums.length - 1);
}
private TreeNode toBST(int[] nums, int sIdx, int eIdx){
    if (sIdx > eIdx) return null;
    int mIdx = (sIdx + eIdx) / 2;
    TreeNode root = new TreeNode(nums[mIdx]);
    root.left =  toBST(nums, sIdx, mIdx - 1);
    root.right = toBST(nums, mIdx + 1, eIdx);
    return root;
}


7. 根据有序链表构造平衡的二叉查找树


109. Convert Sorted List to Binary Search Tree (Medium)


Leetcode / 力扣

Given the sorted linked list: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
      0
     / \
   -3   9
   /   /
 -10  5


public TreeNode sortedListToBST(ListNode head) {
    if (head == null) return null;
    if (head.next == null) return new TreeNode(head.val);
    ListNode preMid = preMid(head);
    ListNode mid = preMid.next;
    preMid.next = null;  // 断开链表
    TreeNode t = new TreeNode(mid.val);
    t.left = sortedListToBST(head);
    t.right = sortedListToBST(mid.next);
    return t;
}
private ListNode preMid(ListNode head) {
    ListNode slow = head, fast = head.next;
    ListNode pre = head;
    while (fast != null && fast.next != null) {
        pre = slow;
        slow = slow.next;
        fast = fast.next.next;
    }
    return pre;
}


8. 在二叉查找树中寻找两个节点,使它们的和为一个给定值


653. Two Sum IV - Input is a BST (Easy)


Leetcode / 力扣


Input:
    5
   / \
  3   6
 / \   \
2   4   7
Target = 9
Output: True


使用中序遍历得到有序数组之后,再利用双指针对数组进行查找。


应该注意到,这一题不能用分别在左右子树两部分来处理这种思想,因为两个待求的节点可能分别在左右子树中。


public boolean findTarget(TreeNode root, int k) {
    List<Integer> nums = new ArrayList<>();
    inOrder(root, nums);
    int i = 0, j = nums.size() - 1;
    while (i < j) {
        int sum = nums.get(i) + nums.get(j);
        if (sum == k) return true;
        if (sum < k) i++;
        else j--;
    }
    return false;
}
private void inOrder(TreeNode root, List<Integer> nums) {
    if (root == null) return;
    inOrder(root.left, nums);
    nums.add(root.val);
    inOrder(root.right, nums);
}


9. 在二叉查找树中查找两个节点之差的最小绝对值


530. Minimum Absolute Difference in BST (Easy)


Leetcode / 力扣


Input:
   1
    \
     3
    /
   2
Output:


利用二叉查找树的中序遍历为有序的性质,计算中序遍历中临近的两个节点之差的绝对值,取最小值。


private int minDiff = Integer.MAX_VALUE;
private TreeNode preNode = null;
public int getMinimumDifference(TreeNode root) {
    inOrder(root);
    return minDiff;
}
private void inOrder(TreeNode node) {
    if (node == null) return;
    inOrder(node.left);
    if (preNode != null) minDiff = Math.min(minDiff, node.val - preNode.val);
    preNode = node;
    inOrder(node.right);
}


10. 寻找二叉查找树中出现次数最多的值


501. Find Mode in Binary Search Tree (Easy)


Leetcode / 力扣


1
    \
     2
    /
   2
return [2].


答案可能不止一个,也就是有多个值出现的次数一样多。


private int curCnt = 1;
private int maxCnt = 1;
private TreeNode preNode = null;
public int[] findMode(TreeNode root) {
    List<Integer> maxCntNums = new ArrayList<>();
    inOrder(root, maxCntNums);
    int[] ret = new int[maxCntNums.size()];
    int idx = 0;
    for (int num : maxCntNums) {
        ret[idx++] = num;
    }
    return ret;
}
private void inOrder(TreeNode node, List<Integer> nums) {
    if (node == null) return;
    inOrder(node.left, nums);
    if (preNode != null) {
        if (preNode.val == node.val) curCnt++;
        else curCnt = 1;
    }
    if (curCnt > maxCnt) {
        maxCnt = curCnt;
        nums.clear();
        nums.add(node.val);
    } else if (curCnt == maxCnt) {
        nums.add(node.val);
    }
    preNode = node;
    inOrder(node.right, nums);
}


参考文章


Leetcode 题解 - 树


小结


如果你想学好算法,建议上面二叉树的题目都刷一下。如果你只是想应付面试,主要看一下高频的面试题目即可。


  • 树的递归。比如树的深度,最小深度,树的镜像。
  • 二叉树的前序遍历,中序遍历,后续遍历,记住,递归和非递归解法都要会。学会举一反三。
  • 二叉树的层序遍历,递归和非递归也都要会。
  • 常见的 BST 算法。二叉查找树的最近公共祖先(两个元素的,三个元素的,多个元素呢)。二叉树的最近公共祖先。

相关文章
|
5天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
36 5
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
64 5
|
2月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩分享分库分表的基因算法设计,涵盖分片键选择、水平拆分策略及基因法优化查询效率等内容,助力面试者应对大厂技术面试,提高架构设计能力。
美团面试:百亿级分片,如何设计基因算法?
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
48 0
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩在读者群中分享了关于分库分表的基因算法设计,旨在帮助大家应对一线互联网企业的面试题。文章详细介绍了分库分表的背景、分片键的设计目标和建议,以及基因法的具体应用和优缺点。通过系统化的梳理,帮助读者提升架构、设计和开发水平,顺利通过面试。
美团面试:百亿级分片,如何设计基因算法?
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
算法 Java
JAVA 二叉树面试题
JAVA 二叉树面试题
19 0
|
5天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
120 80

热门文章

最新文章