MCU ADC如何测量超过VCC的电压?

简介: MCU ADC如何测量超过VCC的电压?

假设MCU的供电是3.3V,ADC能够测量的电压范围是0-3.3V,如果要测量如电池电压6V的这种场景,该怎么办呢?

很容易能够想到的方法是先进行电阻分压,将高于3.3V的电压分到ADC的量程内进行采集,最后再换算回实际电压。这就引入了一个问题,分压电压该选多大?比如进行1/2分压,是选2个1KΩ串联还是选两个1MΩ串联呢?电阻值能否随意选择呢?

先说结论:电阻不能随意选,首先它不能太大!

以STM32F103为例子,在数据手册中可以看到外部输入阻抗有一个最大值50kΩ的要求。

这个值是由下面的计算公式算出来的,

需要注意的是输入阻抗的最大值并不是固定不变的,不是说只要小于50kΩ就可以,因为它和ADC时钟频率、采样周期、转换位数都有关系。比如上面表格中,当ADC时钟频率14Mhz,采样周期1.5 cycels,转换位数12时,最大输入阻抗就是0.4kΩ。

Tab 46标称的最大输入阻抗50kΩ,是在ADC时钟频率14Mhz,采样周期55.5 cycles,转换位数12时计算出来的值,它同时也是ADC模块所能接受的最大值 (受硬件决定,这也是为什么Tab 47最后两行写NA的原因,虽然根据公式也能算出来一个比50更大的值)。

简单来说,可以这么理解:因为ADC内部的采样保持电路(电容组成),如果外面的电阻大,就会导致RC电路充电时间长,如果采样周期小,就会引起电容在没完全充满电的情况下就被采集,自然ADC得到的数就不准

从提高ADC采样速率的角度来说,电阻越小,RC充放电速度快,ADC的采样速率就能更高。不过电阻小,会增大功耗,在对功耗有要求的场合,这个电阻还不能选的太小。

对于必须低输入阻抗,同时又需要低功耗的场合,可以先用大电阻分压,后面再用运放跟随器的方式。

电阻大小的问题说完了,还有最后一个问题,等效输入阻抗和第一幅图里的两个串联分压电阻是什么关系?等效输入阻抗是R1、还是串联值R1+R2,还是并联值R1*R2/R1+R2 呢?这个问题曾困惑了我好久,当年上学时学的理论知识全交给老师了

这个问题可以这么简单想,假设R2是0Ω,进入到ADC的电压就是GND,和R1是多大就没关系了,等效输入阻抗就是0Ω。再假设R2无穷大,等于是断开,电阻只有R1了。这么一想答案就清晰了吧,等效输入阻抗是两个分压电阻的并联


相关文章
|
3月前
|
算法 SoC
在写PWM风扇驱动之前:如何透过FG信号,获取风扇转速?
本文介绍了如何通过PWM风扇的FG信号线获取风扇转速的方法,包括风扇规格的解读、FG信号的公式推导、软件算法的解析,以及在全志H713平台上实现风扇转速获取的驱动代码示例。
172 2
在写PWM风扇驱动之前:如何透过FG信号,获取风扇转速?
|
4月前
|
传感器 编解码 IDE
STM32CubeMX ADC采集光照和电压
STM32CubeMX ADC采集光照和电压
162 3
|
3月前
|
编解码 算法
掌握PWM:STM32F103实现PWM控制直流电机小风扇
PWM,即脉冲宽度调制(Pulse Width Modulation),是一种广泛应用于电子和电机控制领域的信号编码方法。PWM的核心思想是通过改变数字信号的脉冲宽度来模拟模拟信号的幅度变化,从而达到控制输出功率的目的。
502 0
|
6月前
|
传感器 存储 前端开发
电源常用电路:采样电路
在之前的帖子中,我们已经介绍了数字电源及其核心控制器PPEC。当然,数字电源除了包含电源拓扑电路以及数字控制核心外,还包括采样、驱动和通讯等外围电路。 本篇就先对电源的ADC采样原理和常用的采样调理电路进行介绍吧。 一、ADC采样原理 ADC(模数转换器)采样是将模拟信号按照一定的采样频率进行离散化,然后转换为数字信号的过程,通常包括采样、保持、量化和编码四个步骤。 ▍采样 采样主要实现模拟信号的离散化处理,即将连续的模拟信号转换为一系列时间间隔相等的模拟信号。 采样的间隔由采样频率决定,频率越高采样得到的信号越接近原始信号。但较高的采样频率会使得数据量增加,同时对系统的转换速度要
129 4
|
6月前
|
JavaScript
1.2MHz,固定频率白光LED驱动器
TX6216是一款高效升压转换器,适用于单节锂离子电池驱动7个串联的白光LED。它采用电流模式,1.2MHz固定频率操作,内置功率MOSFET,拥有低104mV反馈电压,提供欠压锁定、限流和热过载保护。此外,其软启动功能降低浪涌电流,小型封装节省空间并降低成本。主要应用于相机闪光灯、手机及数码相机等LED背光。设计中需注意电感、电容和二极管的选择,以及良好的布局以确保性能。
|
传感器 芯片
MCU实现对外部脉冲信号的计数功能
MCU实现对外部脉冲信号的计数功能
61 1
无源晶振匹配电容—计算方法
无源晶振匹配电容—计算方法
226 0
单片机数码管显示热敏电阻实测温度,
单片机数码管显示热敏电阻实测温度,
102 0
|
测试技术 C语言 芯片
基于51单片机的自动打铃打鸣作息报时系统AT89C51数码管三极管时钟电路
基于51单片机的自动打铃打鸣作息报时系统AT89C51数码管三极管时钟电路
246 0
|
算法 机器人 芯片
利用单片机PWM信号占空比进行舵机控制
基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵活应用。
237 0