云原生网关可观测性综合实践

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 云原生网关可观测性综合实践

作者:钰诚


可观测性


可观测性(Observability)是指系统、应用程序或服务的运行状态、性能和行为能够被有效地监测、理解和调试的能力。


随着系统架构从单体架构到集群架构再到微服务架构的演进,业务越来越庞大,也越来越复杂。云原生时代背景下,随着微服务、Service Mesh、 Serverless 等新技术的出现,业务的复杂度很快就超过了个人的极限,可观测性在现代分布式系统的设计和运维中变得越来越重要。传统的监控和告警方法往往只关注系统的一些基本指标,而忽略了更细粒度的信息和上下文。可观测性的目标是通过全面的数据收集和分析,提供更深入和全面的洞察力,使运维和开发人员能够更好地理解系统的行为、排查问题、预测性能瓶颈和应对故障。


日志、指标和分布式追踪被称为可观测性的三大支柱:

  1. 日志(Logging):日志是记录系统运行过程中产生的事件和信息的记录。通过记录应用程序的日志,可以了解系统的运行状态、错误和异常信息,方便故障排查和系统分析。常见的日志系统包括 ELK(Elasticsearch、Logstash、Kibana)和 Splunk 等。
  2. 指标(Metrics):指标是用于衡量系统各个方面性能的度量标准。通过采集和记录指标数据,可以实时监控系统的运行情况,包括 CPU 使用率、内存占用、请求响应时间等。常用的指标系统有 Prometheus 和 InfluxDB 等。
  3. 分布式追踪(Distributed Tracing):分布式追踪是用于跟踪和监控分布式系统中请求的路径和性能的技术。通过将请求在系统中的不同组件之间传递一个唯一标识符,可以追踪请求的流程和耗时,帮助分析和优化系统性能。常见的分布式追踪系统有 Zipkin 和 Apache Skywalking 等。


通过提供全面且精确的可观测性,系统的开发和运维人员可以更快速地发现问题、理解系统行为,并做出相应的优化和决策,从而提高系统的性能、稳定性和可靠性。


云原生网关可观测体系


MSE 云原生网关依托阿里云现有的云产品(日志服务 SLS、应用实时监控服务 ARMS)以及对开源软件的良好支持构建了丰富的可观测体系,为用户提供了强大的日志、监控、链路追踪以及告警功能,功能大图如下所示:



网关的可观测性能力致力于帮助客户构建产品的可靠性体验,为客户提供故障发现与故障定位的能力,减少故障的发生以及降低故障的影响面。基于网关的监控与告警管理功能,实现故障的及时发现与通知到客户;基于监控与日志,实现故障的快速定位;基于链路追踪,实现请求调用的全链路故障根因排查。


云原生网关可观测实践


过程概览

本文将依据下图中标注的功能模块出发,帮助读者体验网关可观测性在故障发现与故障定位中的能力。



整体流程如下图所示:

  1. 用户收到网关发出的告警
  2. 用户查看 prometheus 监控找到出问题的路由、服务
  3. 用户查看 SLS 日志获取更详细的报错信息
  4. 用户通过链路追踪排故障的根因




测试环境架构概览



本文在 ACK 集群中部署了一系列 Springboot 的服务,调用关系如上图所示,其中 Spring SVC 4-2 发生了 crash。通过网关接入 ACK 集群,创建路由如下:



测试过程中会通过以下三种请求去访问网关:

  1. 正常的请求,网关路由到 httpbin
  2. 在网关处就返回错误的请求,本文使用无法命中路由的请求
  3. 在上游服务返回错误的请求,网关路由到 Spring SVC 1


此时网关的错误率会出现明显上升。


故障发现与定位过程

通过告警策略及时发现故障

首先配置网关的告警策略,从网关实例粒度设置告警规则与通知策略,本文中采用了邮件通知的方式,除此之外还有电话、短信等方式。配置告警策略的示例如下图所示:



通过以下邮件信息可以得知网关出现了故障:



通过 Arms Prometheus 监控初步定位问题

接下来,查看网关观测分析->业务监控->全局看板的错误信息概览板块,当前监控信息如下:



根据图中内容,可以得到以下信息:

  1. “网关粒度失败率”看板中,网关整体失败率是大于上游服务失败率的,这意味着一部分请求在网关处返回了错误码,一部分请求在上游服务处返回了错误码
  2. “路由粒度失败率”看板中,能够看到只有路由名称为 “spring” 的路由失败率不是 0
  3. “上游服务粒度失败率”看板中,能够看到只有服务名称为 “springboot-svc-1.app-system.svc.cluster.local” 的服务失败率不是 0


点击图中“路由失败请求数排行”或者“上游服务失败请求数排行”中的路由名或者服务名可以查看路由或者服务的详细信息。


路由名为 “spring” 的路由监控信息如下图所示:



服务名为 “springboot-svc-1.app-system.svc.cluster.local” 的服务监控信息如下图所示:



上图中显示出现错误的路由和服务返回的错误码为 5xx,至此,已经初步定位到问题所在:路由 “spring” 指向的上游服务 “springboot-svc-1.app-system.svc.cluster.local” 出现了问题。


但是,目前还有两个问题需要解决:

  1. 在网关处返回错误的请求是什么原因?
  2. 服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误是什么原因造成的?

通过 SLS 网关日志获取详细信息

接下来通过网关日志中心的 SLS 日志获取更详细的信息。



首先点击 response_code,此时会自动生成查询请求,可以看到这段时间内网关的响应码只有三种:200,404,500。在网关问题排查页面,输入响应码,可以查看错误码可能的原因:



可以看到返回 404 响应码的原因是没有命中路由导致。类似的,当选择响应码为 500 时,可以看到相应的路由名以及服务名,如下图所示:



通过问题排查工具可以看到,错误是后端服务造成的:



到现在为止,只剩下一个问题:服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误根因是什么?

通过 Arms xtrace 链路追踪分析调用链

借助于链路追踪技术,可以获取更细粒度的错误信息。只需要简单的配置,网关即可接入 Arms xtrace:



ACK 集群上的 Java 应用按照以下文档进行配置:为容器服务 Kubernetes 版 Java 应用安装探针[1]



在 SLS 日志中找到一条错误请求的 traceid,根据 traceid 在链路追踪页面搜索相应的调用链路分析调用链路错误的根因:



从链路追踪结果看,故障根因是 springboot-svc-4-2 服务错误,至此,一次完整的故障发现与故障定位已经完成。


总结


本次通过云原生网关可观测性进行故障发现和故障定位的实践过程中,首先通过网关的告警策略将故障通知到用户,然后通过 arms 提供的 prometheus 监控服务初步定位到出现故障的路由以及服务,之后通过 SLS 日志服务提供的网关的结构化日志进行查询分析,排查出部分错误是客户端请求路径错误导致,最后通过链路追踪对服务调用链路进行分析,最终成功对故障根因进行定位。


加入 Higress 社区



相关链接:

[1] 为容器服务 Kubernetes 版 Java 应用安装探针

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/install-arms-agent-for-java-applications-deployed-in-ack?spm=a2c4g.11186623.0.i6#arms-cs-k8s-java

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
21天前
|
Cloud Native 持续交付 开发者
云原生技术在现代企业中的应用与实践####
本文深入探讨了云原生技术的核心概念及其在现代企业IT架构转型中的关键作用,通过具体案例分析展示了云原生如何促进企业的敏捷开发、高效运维及成本优化。不同于传统摘要仅概述内容,本部分旨在激发读者对云原生领域的兴趣,强调其在加速数字化转型过程中的不可或缺性,为后续详细论述奠定基础。 ####
|
11天前
|
Cloud Native 安全 Java
铭师堂的云原生升级实践
铭师堂完整经历了云计算应用的四个关键阶段:从”启动上云”到”全量上云”,再到”全栈用云”,最终达到”精益用云”。通过 MSE 云原生网关的落地,为我们的组织带来了诸多收益,SLA 提升至100%,财务成本降低67%,算力成本降低75%,每次请求 RT 减少5ms。
铭师堂的云原生升级实践
|
10天前
|
Cloud Native 安全 Java
杭州铭师堂的云原生升级实践
在短短 2-3 年间,杭州铭师堂完整经历了云计算应用的四个关键阶段:从“启动上云”到“全量上云”,再到“全栈用云”,最终达到“精益用云”。也从云计算的第一次浪潮,迈过了第二次浪潮,顺利的进入到了 第三次浪潮 AI + 云。
|
10天前
|
Cloud Native
邀您参加云原生高可用技术沙龙丨云上高可用体系构建:从理论到实践
云原生高可用技术专场,邀您从理论到实践一起交流,探索云上高可用体系构建!
|
21天前
|
Kubernetes Cloud Native API
云原生入门:从理论到实践的探索之旅
本文旨在为初学者提供一个关于云原生技术的全面介绍,包括其定义、核心原则、关键技术组件以及如何将这些概念应用于实际项目中。我们将通过一个简易的代码示例,展示如何在云原生环境下部署一个简单的应用,从而帮助读者更好地理解云原生技术的实践意义和应用价值。
|
23天前
|
运维 Cloud Native 开发者
云原生技术入门与实践
在云计算的浪潮中,云原生技术以其独特的优势和魅力吸引了越来越多的开发者和企业。本文将从云原生技术的基本概念、核心组件以及实际应用三个方面进行详细介绍,帮助读者更好地理解和掌握这一新兴技术。同时,文章还将分享一些实际案例和经验教训,让读者能够更深入地了解云原生技术的应用场景和发展趋势。
38 5
|
1月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
1月前
|
Cloud Native 安全 Docker
云原生技术在现代应用部署中的实践与思考
本文深入探讨了云原生技术如何在现代应用部署中发挥关键作用,并提供了具体的代码示例来展示其实现。通过分析云原生的核心概念和优势,我们将了解如何利用这些技术来提高应用的可扩展性、可靠性和安全性。文章还将讨论云原生技术的未来发展趋势,以及如何将其应用于实际项目中,以实现更高效和灵活的应用部署。
|
21天前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
36 0
|
28天前
|
Cloud Native 持续交付 云计算
云计算的转型之路:探索云原生架构的崛起与实践####
随着企业数字化转型加速,云原生架构以其高效性、灵活性和可扩展性成为现代IT基础设施的核心。本文深入探讨了云原生技术的关键要素,包括容器化、微服务、持续集成/持续部署(CI/CD)及无服务器架构等,并通过案例分析展示了这些技术如何助力企业实现敏捷开发、快速迭代和资源优化。通过剖析典型企业的转型经历,揭示云原生架构在应对市场变化、提升业务竞争力方面的巨大潜力。 ####
34 0