云原生网关可观测性综合实践

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
性能测试 PTS,5000VUM额度
简介: 云原生网关可观测性综合实践

作者:钰诚


可观测性


可观测性(Observability)是指系统、应用程序或服务的运行状态、性能和行为能够被有效地监测、理解和调试的能力。


随着系统架构从单体架构到集群架构再到微服务架构的演进,业务越来越庞大,也越来越复杂。云原生时代背景下,随着微服务、Service Mesh、 Serverless 等新技术的出现,业务的复杂度很快就超过了个人的极限,可观测性在现代分布式系统的设计和运维中变得越来越重要。传统的监控和告警方法往往只关注系统的一些基本指标,而忽略了更细粒度的信息和上下文。可观测性的目标是通过全面的数据收集和分析,提供更深入和全面的洞察力,使运维和开发人员能够更好地理解系统的行为、排查问题、预测性能瓶颈和应对故障。


日志、指标和分布式追踪被称为可观测性的三大支柱:

  1. 日志(Logging):日志是记录系统运行过程中产生的事件和信息的记录。通过记录应用程序的日志,可以了解系统的运行状态、错误和异常信息,方便故障排查和系统分析。常见的日志系统包括 ELK(Elasticsearch、Logstash、Kibana)和 Splunk 等。
  2. 指标(Metrics):指标是用于衡量系统各个方面性能的度量标准。通过采集和记录指标数据,可以实时监控系统的运行情况,包括 CPU 使用率、内存占用、请求响应时间等。常用的指标系统有 Prometheus 和 InfluxDB 等。
  3. 分布式追踪(Distributed Tracing):分布式追踪是用于跟踪和监控分布式系统中请求的路径和性能的技术。通过将请求在系统中的不同组件之间传递一个唯一标识符,可以追踪请求的流程和耗时,帮助分析和优化系统性能。常见的分布式追踪系统有 Zipkin 和 Apache Skywalking 等。


通过提供全面且精确的可观测性,系统的开发和运维人员可以更快速地发现问题、理解系统行为,并做出相应的优化和决策,从而提高系统的性能、稳定性和可靠性。


云原生网关可观测体系


MSE 云原生网关依托阿里云现有的云产品(日志服务 SLS、应用实时监控服务 ARMS)以及对开源软件的良好支持构建了丰富的可观测体系,为用户提供了强大的日志、监控、链路追踪以及告警功能,功能大图如下所示:



网关的可观测性能力致力于帮助客户构建产品的可靠性体验,为客户提供故障发现与故障定位的能力,减少故障的发生以及降低故障的影响面。基于网关的监控与告警管理功能,实现故障的及时发现与通知到客户;基于监控与日志,实现故障的快速定位;基于链路追踪,实现请求调用的全链路故障根因排查。


云原生网关可观测实践


过程概览

本文将依据下图中标注的功能模块出发,帮助读者体验网关可观测性在故障发现与故障定位中的能力。



整体流程如下图所示:

  1. 用户收到网关发出的告警
  2. 用户查看 prometheus 监控找到出问题的路由、服务
  3. 用户查看 SLS 日志获取更详细的报错信息
  4. 用户通过链路追踪排故障的根因




测试环境架构概览



本文在 ACK 集群中部署了一系列 Springboot 的服务,调用关系如上图所示,其中 Spring SVC 4-2 发生了 crash。通过网关接入 ACK 集群,创建路由如下:



测试过程中会通过以下三种请求去访问网关:

  1. 正常的请求,网关路由到 httpbin
  2. 在网关处就返回错误的请求,本文使用无法命中路由的请求
  3. 在上游服务返回错误的请求,网关路由到 Spring SVC 1


此时网关的错误率会出现明显上升。


故障发现与定位过程

通过告警策略及时发现故障

首先配置网关的告警策略,从网关实例粒度设置告警规则与通知策略,本文中采用了邮件通知的方式,除此之外还有电话、短信等方式。配置告警策略的示例如下图所示:



通过以下邮件信息可以得知网关出现了故障:



通过 Arms Prometheus 监控初步定位问题

接下来,查看网关观测分析->业务监控->全局看板的错误信息概览板块,当前监控信息如下:



根据图中内容,可以得到以下信息:

  1. “网关粒度失败率”看板中,网关整体失败率是大于上游服务失败率的,这意味着一部分请求在网关处返回了错误码,一部分请求在上游服务处返回了错误码
  2. “路由粒度失败率”看板中,能够看到只有路由名称为 “spring” 的路由失败率不是 0
  3. “上游服务粒度失败率”看板中,能够看到只有服务名称为 “springboot-svc-1.app-system.svc.cluster.local” 的服务失败率不是 0


点击图中“路由失败请求数排行”或者“上游服务失败请求数排行”中的路由名或者服务名可以查看路由或者服务的详细信息。


路由名为 “spring” 的路由监控信息如下图所示:



服务名为 “springboot-svc-1.app-system.svc.cluster.local” 的服务监控信息如下图所示:



上图中显示出现错误的路由和服务返回的错误码为 5xx,至此,已经初步定位到问题所在:路由 “spring” 指向的上游服务 “springboot-svc-1.app-system.svc.cluster.local” 出现了问题。


但是,目前还有两个问题需要解决:

  1. 在网关处返回错误的请求是什么原因?
  2. 服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误是什么原因造成的?

通过 SLS 网关日志获取详细信息

接下来通过网关日志中心的 SLS 日志获取更详细的信息。



首先点击 response_code,此时会自动生成查询请求,可以看到这段时间内网关的响应码只有三种:200,404,500。在网关问题排查页面,输入响应码,可以查看错误码可能的原因:



可以看到返回 404 响应码的原因是没有命中路由导致。类似的,当选择响应码为 500 时,可以看到相应的路由名以及服务名,如下图所示:



通过问题排查工具可以看到,错误是后端服务造成的:



到现在为止,只剩下一个问题:服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误根因是什么?

通过 Arms xtrace 链路追踪分析调用链

借助于链路追踪技术,可以获取更细粒度的错误信息。只需要简单的配置,网关即可接入 Arms xtrace:



ACK 集群上的 Java 应用按照以下文档进行配置:为容器服务 Kubernetes 版 Java 应用安装探针[1]



在 SLS 日志中找到一条错误请求的 traceid,根据 traceid 在链路追踪页面搜索相应的调用链路分析调用链路错误的根因:



从链路追踪结果看,故障根因是 springboot-svc-4-2 服务错误,至此,一次完整的故障发现与故障定位已经完成。


总结


本次通过云原生网关可观测性进行故障发现和故障定位的实践过程中,首先通过网关的告警策略将故障通知到用户,然后通过 arms 提供的 prometheus 监控服务初步定位到出现故障的路由以及服务,之后通过 SLS 日志服务提供的网关的结构化日志进行查询分析,排查出部分错误是客户端请求路径错误导致,最后通过链路追踪对服务调用链路进行分析,最终成功对故障根因进行定位。


加入 Higress 社区



相关链接:

[1] 为容器服务 Kubernetes 版 Java 应用安装探针

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/install-arms-agent-for-java-applications-deployed-in-ack?spm=a2c4g.11186623.0.i6#arms-cs-k8s-java

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
8天前
|
运维 Kubernetes Cloud Native
云原生技术入门及实践
【10月更文挑战第39天】在数字化浪潮的推动下,云原生技术应运而生,它不仅仅是一种技术趋势,更是企业数字化转型的关键。本文将带你走进云原生的世界,从基础概念到实际操作,一步步揭示云原生的魅力和价值。通过实例分析,我们将深入探讨如何利用云原生技术提升业务灵活性、降低成本并加速创新。无论你是云原生技术的初学者还是希望深化理解的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
1天前
|
Cloud Native 安全 Docker
云原生技术在现代应用部署中的实践与思考
本文深入探讨了云原生技术如何在现代应用部署中发挥关键作用,并提供了具体的代码示例来展示其实现。通过分析云原生的核心概念和优势,我们将了解如何利用这些技术来提高应用的可扩展性、可靠性和安全性。文章还将讨论云原生技术的未来发展趋势,以及如何将其应用于实际项目中,以实现更高效和灵活的应用部署。
|
7天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
31 5
|
9天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
9天前
|
消息中间件 缓存 Cloud Native
云原生架构下的性能优化实践与挑战####
随着企业数字化转型的加速,云原生架构以其高度解耦、弹性伸缩和快速迭代的特性,成为现代软件开发的首选模式。本文深入探讨了云原生环境下性能优化的关键策略与面临的主要挑战,通过案例分析,揭示了如何有效利用容器化、微服务、动态调度等技术手段提升应用性能,同时指出了在复杂云环境中确保系统稳定性和高效性的难题,为开发者和架构师提供了实战指南。 ####
22 3
|
9天前
|
运维 Kubernetes Cloud Native
深入理解云原生架构:从理论到实践
【10月更文挑战第38天】本文将引导读者深入探索云原生技术的核心概念,以及如何将这些概念应用于实际的软件开发和运维中。我们将从云原生的基本定义出发,逐步展开其背后的设计哲学、关键技术组件,并以一个具体的代码示例来演示云原生应用的构建过程。无论你是云原生技术的初学者,还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和实操指南。
|
8天前
|
弹性计算 Kubernetes Cloud Native
云原生技术的实践与思考
云原生技术的实践与思考
23 2
|
9天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
24 3
|
9天前
|
存储 Cloud Native 持续交付
云原生入门:从理论到实践
【10月更文挑战第38天】云原生技术正在重塑软件开发和运维的面貌。本文将带你走进云原生的世界,理解其核心理念,并探索如何将这些理念应用于实际项目中。我们将一起学习容器化、微服务架构、持续集成与持续部署(CI/CD)等关键概念,并通过代码示例加深理解。无论你是云原生新手还是希望深化知识的开发者,这篇文章都将为你提供宝贵的知识和启示。
19 3
|
9天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####
下一篇
无影云桌面