矩阵乘法和逆

简介: 矩阵乘法和逆

矩阵乘法

有m×n矩阵A和n×p矩阵B(A的总列数必须与B的总行数相等),两矩阵相乘有AB=C,C是一个m×p矩阵,对于C矩阵中的第i行第j列元素cij,有:

image.png

其中aik是A矩阵的第i行第k列元素,bkj是B矩阵的第k行第j列元素。

可以看出cij其实是A矩阵第i行点乘B矩阵第j列

image.png

矩阵的逆

首先,并不是所有的方阵都有逆;而如果逆存在,则有A−1 A = i = A A−1

对于方阵,左逆和右逆是相等的,但是对于非方阵(长方形矩阵),其左逆不等于右逆。

对于这些有逆的矩阵,我们称其为可逆的或非奇异的

那么如何判断矩阵是否有逆?

1)看这个矩阵的行列式值是否为0,若不为0则矩阵有逆

2)如果存在非零向量x,使得Ax=0,则矩阵A不可逆

如何求矩阵的逆?

接下来介绍高斯-若尔当(Gauss-Jordan)方法。

举例:

方程组image.png我们想要同时解这两个方程1

构造这样一个矩阵

image.png

接下来用消元法将左侧变为单位矩阵

image.png

image.png

而高斯-若尔当法的本质是使用消元矩阵E,对矩阵A进行操作,E[A|I],利用一步步消元有EA=I,进而得到[I|E],其实这个消元矩阵E就是A−1。

相关文章
英伟达发布 Hopper H100 新架构芯片:面向 AI、自动驾驶汽车及 Metaverse 领域
英伟达发布 Hopper H100 新架构芯片:面向 AI、自动驾驶汽车及 Metaverse 领域
1328 0
英伟达发布 Hopper H100 新架构芯片:面向 AI、自动驾驶汽车及 Metaverse 领域
淘宝淘口令转换API接口(淘宝API系列)
淘宝淘口令转换API是用于将淘宝商品或店铺链接与淘口令进行双向转换的接口,支持HTTP POST请求。开发者可通过此API生成或解析淘口令,方便在不同平台传播淘宝内容,吸引更多潜在客户。API返回JSON格式数据,包含转换结果和状态信息。使用前需注册并申请权限,确保调用稳定可靠。示例代码展示了如何通过Python实现淘口令的生成和解析功能。
使用Python进行数据清洗的实用指南
在数据分析的世界里,"垃圾进,垃圾出"这句老话再贴切不过。数据清洗作为数据分析前的关键步骤,直接影响着分析结果的准确性与可靠性。本文将通过浅显易懂的语言和实际代码示例,带你掌握如何使用Python及其强大的库进行数据清洗,从缺失值处理到异常值检测,再到数据格式转换和重复数据删除,让你的数据准备工作变得既高效又专业。
455 2
构建响应式Web界面:Flexbox与Grid布局的深度解析
【10月更文挑战第11天】本文深入解析了CSS3中的Flexbox和Grid布局,探讨了它们的特点、应用场景及使用方法。Flexbox适用于一维布局,如导航栏;Grid布局则适用于二维布局,如复杂网格。通过示例代码和核心属性介绍,帮助开发者灵活构建响应式Web界面。
211 5
如何防止内网攻击?
如何防止内网攻击?【10月更文挑战第10天】
270 2
TensorFlow的自动微分与梯度下降
【4月更文挑战第17天】本文探讨了TensorFlow中的自动微分和梯度下降在机器学习模型优化中的作用。自动微分通过计算图实现,简化了深度学习模型中梯度的计算。TensorFlow利用`tf.GradientTape`进行反向传播以求梯度。梯度下降算法用于更新参数,`tf.train.GradientDescentOptimizer`是实现这一过程的一种方式。此外,TensorFlow还提供了其他优化器以提升性能。理解这些概念有助于更有效地构建和优化机器学习模型。
云上智能投顾:重塑个人理财的新纪元
数据安全与隐私保护:随着投资者信息的不断增加如何确保数据的安全性和隐私性成为亟待解决的问题。 技术成熟度与稳定性:目前云上智能投顾技术仍处于不断发展和完善阶段其技术成熟度和稳定性仍需进一步提升。 投资者教育与信任度:部分投资者对新兴的智能投顾技术持怀疑态度如何提升投资者的信任度和接受度也是一大挑战。 五、未来展望 随着技术的不断进步和市场环境的不断变化云上智能投顾将迎来更加广阔的发展前景。未来云上智能投顾将更加注重数据安全和隐私保护加强技术研发提升技术成熟度和稳定性;同时加强与金融机构、科技企业的合作共同推动智能投顾行业的健康发展;此外还将积极探索新的应用场景和服务模式如企业投顾、公益投顾等以
269 7
探索机器学习在金融欺诈检测中的应用
【5月更文挑战第3天】 随着金融科技的迅猛发展,机器学习作为其核心推动力之一,正逐渐改变着我们对金融服务安全与效率的理解。本文将深入探讨机器学习技术在金融欺诈检测领域内的应用现状与前景。通过分析多种算法和实际案例,我们揭示了如何利用机器学习提高识别欺诈行为的准确率,降低金融机构的风险损失。同时,文章还将讨论在此过程中遇到的挑战及未来的发展趋势,为读者提供一个全面而深入的视角。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问