Matlab 遗传算法优化极限学习机(GA-ELM)分类预测

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
全球加速 GA,每月750个小时 15CU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: Matlab 遗传算法优化极限学习机(GA-ELM)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在当今数据驱动的世界中,数据分类是一项至关重要的任务。通过对数据进行分类,我们可以从中获取有价值的信息和见解,从而做出更明智的决策。在机器学习领域,有许多不同的算法和技术可用于数据分类,其中包括神经网络。

神经网络是一种模仿人脑神经系统的计算模型,它由多个神经元组成,这些神经元通过连接来传递信息。神经网络已经在各个领域取得了显著的成功,尤其是在图像和语音识别方面。然而,传统的神经网络在训练过程中需要大量的计算资源和时间,并且容易陷入局部最优解。

为了克服这些问题,近年来出现了一种新的神经网络算法,即极限学习机(Extreme Learning Machine,简称ElM)。ElM是一种单层前馈神经网络,其隐藏层的权重和偏差是随机初始化的,而输出层的权重则通过最小二乘法进行计算。相比传统的神经网络,ElM具有更快的训练速度和更好的泛化能力。

然而,ElM在处理复杂数据分类问题时仍然存在一些挑战。为了进一步提高ElM的性能,我们可以使用遗传算法对ElM进行优化。遗传算法是一种模拟自然进化过程的优化算法,通过遗传操作(如选择、交叉和变异)来搜索最优解。通过将遗传算法与ElM相结合,我们可以找到更好的权重和偏差配置,从而提高ElM的分类准确性。

优化ElM神经网络的过程可以分为以下几个步骤:

  1. 数据准备:首先,我们需要准备用于训练和测试的数据集。数据集应该包含已标记的样本,并且应该经过预处理以消除噪声和不必要的特征。
  2. ElM模型构建:接下来,我们需要构建ElM神经网络模型。ElM包括输入层、隐藏层和输出层。隐藏层的神经元数量可以根据问题的复杂性进行调整。
  3. 遗传算法优化:然后,我们使用遗传算法对ElM进行优化。遗传算法的参数设置和操作选择将对优化结果产生重要影响。我们可以通过交叉验证等技术来选择最佳参数和操作。
  4. 训练和测试:接下来,我们使用优化后的ElM模型对训练数据进行训练,并使用测试数据进行评估。通过比较预测结果和实际标签,我们可以计算分类准确性和其他评估指标。

通过以上步骤,我们可以实现基于遗传算法优化的ElM神经网络的数据分类。这种方法在处理复杂数据集时具有较好的性能,并且可以提供高准确性的分类结果。

总结起来,ElM是一种有效的神经网络算法,它通过随机初始化隐藏层权重和偏差,通过最小二乘法计算输出层权重。然而,为了进一步提高ElM的性能,我们可以使用遗传算法进行优化。通过将遗传算法与ElM相结合,我们可以找到更优的权重和偏差配置,从而提高ElM的分类准确性。这种基于遗传算法优化的ElM神经网络方法在数据分类中具有广泛的应用前景,可以帮助我们从数据中获得更准确和有用的信息。

⛄ 部分代码

% BS2RV.m - Binary string to real vector%% This function decodes binary chromosomes into vectors of reals. The% chromosomes are seen as the concatenation of binary strings of given% length, and decoded into real numbers in a specified interval using% either standard binary or Gray decoding.%% Syntax:       Phen = bs2rv(Chrom,FieldD)%% Input parameters:%%               Chrom    - Matrix containing the chromosomes of the current%                          population. Each line corresponds to one%                          individual's concatenated binary string%         representation. Leftmost bits are MSb and%         rightmost are LSb.%%               FieldD   - Matrix describing the length and how to decode%         each substring in the chromosome. It has the%         following structure:%%        [len;    (num)%         lb;    (num)%         ub;    (num)%         code;    (0=binary     | 1=gray)%         scale;    (0=arithmetic | 1=logarithmic)%         lbin;    (0=excluded   | 1=included)%         ubin];    (0=excluded   | 1=included)%%         where%        len   - row vector containing the length of%          each substring in Chrom. sum(len)%          should equal the individual length.%        lb,%        ub    - Lower and upper bounds for each%          variable. %        code  - binary row vector indicating how each%          substring is to be decoded.%        scale - binary row vector indicating where to%          use arithmetic and/or logarithmic%          scaling.%        lbin,%        ubin  - binary row vectors indicating whether%          or not to include each bound in the%          representation range%% Output parameter:%%               Phen     - Real matrix containing the population phenotypes.%% Author: Carlos Fonseca,   Updated: Andrew Chipperfield% Date: 08/06/93,    Date: 26-Jan-94function Phen = bs2rv(Chrom,FieldD)% Identify the population size (Nind)%      and the chromosome length (Lind)[Nind,Lind] = size(Chrom);% Identify the number of decision variables (Nvar)[seven,Nvar] = size(FieldD);if seven ~= 7  error('FieldD must have 7 rows.');end% Get substring propertieslen = FieldD(1,:);lb = FieldD(2,:);ub = FieldD(3,:);code = ~(~FieldD(4,:));scale = ~(~FieldD(5,:));lin = ~(~FieldD(6,:));uin = ~(~FieldD(7,:));% Check substring properties for consistencyif sum(len) ~= Lind,  error('Data in FieldD must agree with chromosome length');endif ~all(lb(scale).*ub(scale)>0)  error('Log-scaled variables must not include 0 in their range');end% Decode chromosomesPhen = zeros(Nind,Nvar);lf = cumsum(len);li = cumsum([1 len]);Prec = .5 .^ len;logsgn = sign(lb(scale));lb(scale) = log( abs(lb(scale)) );ub(scale) = log( abs(ub(scale)) );delta = ub - lb;Prec = .5 .^ len;num = (~lin) .* Prec;den = (lin + uin - 1) .* Prec;for i = 1:Nvar,    idx = li(i):lf(i);    if code(i) % Gray decoding      Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2);    end    Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ];    Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));endexpand = ones(Nind,1);if any(scale)  Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));end

⛄ 运行结果

⛄ 参考文献

[1] 刘子诺.基于秃鹰搜索算法和极限学习机的股票价格预测模型[J].中国管理信息化, 2022, 25(22):157-160.

[2] 徐翠.改进极限学习机亚健康识别算法研究[D].辽宁大学,2016.

[3] 秦岭,王东星,史明泉,等.基于遗传算法优化ELM神经网络的室内可见光定位系统[J].中国激光, 2022, 49(21):10.DOI:10.3788/CJL202249.2106001.

[4] 姚鹏.基于遗传算法的加权ELM分类模型中权重学习[D].深圳大学,2018.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
11天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
5天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
16 5
|
19天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
20天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
20天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
20天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
38 3
|
20天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
下一篇
无影云桌面