搭建AI知识库问答应用的实验报告

简介: 随着人工智能技术的不断发展,越来越多的企业和个人开始关注和使用AI技术来提升工作效率和生活质量。然而,搭建一个高效的AI知识库问答应用并不是一件容易的事情,需要大量的数据和计算资源支持。幸运的是,阿里云提供了丰富的免费资源,可以帮助我们轻松搭建自己的AI知识库问答应用。本文总结此次实验的步骤和完成实验的心得体会。

一、引言

随着人工智能技术的不断发展,越来越多的企业和个人开始关注和使用AI技术来提升工作效率和生活质量。然而,搭建一个高效的AI知识库问答应用并不是一件容易的事情,需要大量的数据和计算资源支持。幸运的是,阿里云提供了丰富的免费资源,可以帮助我们轻松搭建自己的AI知识库问答应用。

二、实验步骤

搭建AI知识库问答应用需要以下步骤:

1.我们可以在阿里云的官网上找到各种类型的免费计算资源,例如阿里函数计算FC、文件存储NAS和RDS PostgreSQL等。这些资源可以提供强大的计算能力和存储空间,满足我们构建AI知识库问答应用的需求。按照文档说明配置完AL应用后,如下图所示:

屏幕截图 2023-09-10 164544.jpg

2.收集和整理数据:收集和整理相关的数据,包括文本、图片、视频等多种形式的数据。这些数据将用于训练模型和测试模型的效果。

收集和整理知识库的途径有很多,以下是一些常用的方法:

  1. 阅读相关书籍、论文、报告等。
  2. 从互联网上爬取相关数据,例如新闻、百科、论坛等。
  3. 从数据库中提取相关数据,例如企业内部的数据、公开数据集等。
  4. 利用机器学习算法对已有数据进行挖掘和分析,从而发现其中的规律和知识。
    下图是将文献导入此模型后,前后回答的对比:
    捕获3.PNG
    我把有关杭州亚运会的知识文档整理为了一个.txt文件进行上传,(百度百科的URL码不知道因为什么原因会上传失败),则可以比较快速地获取问题的答案。但是由图中可以看出由于文档中并没有提供历史上第一位亚运会金牌获得者的信息,此模型给出了错误的回答。
    3.训练模型:使用收集到的数据对选择的模型进行训练,调整模型参数以提高其性能。

    3.心得体会

    在完成了此次实验后我有以下心得:
    首先,完成一个功能完整的搭建AI知识库问答应用,您需要确定您的AI知识库问答应用的目标和功能。比如本次我确定的题目是杭州亚运会。
    其次。在阿里云已经帮助我们搭建完了AI模型后,实验中最难的的问题是,如何收集和整理您的AI知识库。这可能涉及到从各种来源获取信息,如书籍、文章、网站等,并将其组织成一个易于访问和使用的格式。
    总之,使用自己的AI知识库问答应用实验需要认真规划和执行,以确保最终结果符合预期。
相关文章
|
4天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
347 18
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
3天前
|
人工智能 Java API
Spring AI与DeepSeek实战一:快速打造智能对话应用
在 AI 技术蓬勃发展的今天,国产大模型DeepSeek凭借其低成本高性能的特点,成为企业智能化转型的热门选择。而Spring AI作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用各类 AI 服务。本文将手把手教你通过spring-ai集成DeepSeek接口实现普通对话与流式对话功能,助力你的Java应用轻松接入 AI 能力!虽然通过Spring AI能够快速完成DeepSeek大模型与。
116 10
|
4天前
|
人工智能 运维 架构师
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化
|
4天前
|
人工智能 Java API
Java 也能快速搭建 AI 应用?一文带你玩转 Spring AI 可观测性
Java 也能快速搭建 AI 应用?一文带你玩转 Spring AI 可观测性
|
4天前
|
消息中间件 人工智能 自然语言处理
基于 RocketMQ 事件驱动架构的 AI 应用实践
基于 RocketMQ 事件驱动架构的 AI 应用实践
|
5天前
|
传感器 人工智能 搜索推荐
探索HarmonyOS在智慧出行领域的AI类目标签应用
在科技飞速发展的今天,智慧出行成为交通领域的重要发展方向。HarmonyOS凭借强大的系统能力,为智慧出行注入新活力,特别是在AI类目标签技术的应用上。通过精准分类和标签化处理车辆、路况及出行者数据,AI类目标签技术提升了出行体验与交通管理效率。HarmonyOS的分布式软总线技术和隐私保护机制,确保了设备间的无缝连接与数据安全。实际应用中,该技术助力智能交通管理和个性化出行服务,为解决交通拥堵、优化资源配置提供了新思路。开发者也迎来了广阔的机遇与挑战,共同推动智慧出行的美好未来。
|
5天前
|
人工智能 自然语言处理 安全
AI战略丨大模型时代,基金投顾AI应用探索
AI战略丨大模型时代,基金投顾AI应用探索
|
9天前
|
人工智能 Java API
Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性
Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。
|
5天前
|
人工智能
【活动报名】​AI应用启航workshop:瓴羊+通义助力企业迈入AI驱动的数智营销时代
【活动报名】​AI应用启航workshop:瓴羊+通义助力企业迈入AI驱动的数智营销时代
|
8天前
|
人工智能 边缘计算 运维
容器化浪潮下的AI赋能:智能化运维与创新应用
近年来,容器技术以其轻量、高效、可移植的特性成为云原生时代的基石,推动应用开发和部署方式革新。随着容器化应用规模扩大,传统运维手段逐渐力不从心。AI技术的引入为容器化生态带来新活力,实现智能监控、自动化故障诊断与修复及智能资源调度,提升运维效率和可靠性。同时,AI驱动容器化创新应用,如模型训练、边缘计算和Serverless AI服务,带来更多可能性。未来,AI与容器技术的融合将更加紧密,推动更智能、高效的运维平台和丰富的创新应用场景,助力数字化转型。

热门文章

最新文章