m基于FPGA的costas环载波同步verilog实现,包含testbench,可以修改频偏大小

简介: m基于FPGA的costas环载波同步verilog实现,包含testbench,可以修改频偏大小

1.算法仿真效果
其中Vivado2019.2仿真结果如下:

没有costas环,频偏对基带数据的影响

b2ec82a09009d7046d6c82ff17446427_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

加入costas环的基带数据

7d7236196dfd76b5ed953cc9305db750_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
Costas环是一种用于载波同步的常见方法,特别是在调制解调中,它被广泛用于解调相位调制信号,如二进制调相(BPSK)或四进制调相(QPSK)信号。它的目的是估计和追踪接收信号的相位偏移,以便正确解调数据。

其基本结构如下图所示:

94610d86ba2acda1101c582a91cc55ea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Costas环结构:

   如上图所示Costas环包括两个主要部分:一个偏移90度的本地振荡器(Local Oscillator,LO)和一个相移解调器。这两个部分协同工作来估计信号的相位偏移。

Costas环包括以下主要组件:

本地振荡器(Local Oscillator,LO): LO产生一个本地参考信号,其频率与接收信号的载波频率相同。这个本地参考信号通常包括正弦和余弦两路信号,相位相差90度。这两路信号将与接收信号相位进行比较。

相位解调器(Phase Detector): 相位解调器用于测量接收信号和本地振荡器之间的相位差。它的输出是一个带有相位信息的信号。

环路滤波器(Loop Filter): 环路滤波器对相位差信息进行滤波和处理,以生成一个控制电压。这个电压将用于调整本地振荡器的频率和相位,以最小化相位差。

本地振荡器控制单元: 这个单元接收来自环路滤波器的控制电压,并相应地调整本地振荡器的频率和相位。

输出: Costas环的输出是本地振荡器的相位信息,该信息已经被调整,以与接收信号的相位保持同步。这个输出可以用于解调接收信号。

Costas环原理:

   Costas环的原理是利用接收信号和LO之间的相位差异来估计信号的相位偏移。当信号的相位偏移接近0或180度时,乘积信号的幅值最大,而当相位偏移接近90或270度时,乘积信号的幅值最小。因此,通过测量乘积信号的幅值,可以估计相位偏移。

7af91f5c8b93415691d2dfde9a9591db_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1407fe126c1ddc00c0d2318dfb1cf078_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序

19eccfc7adb0ae79d52dc56039609bb5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

````timescale 1ns / 1ps

module costas_tops(
input i_clk,
input i_rst,
input i_bits,
input i_start,
input signed[31:0]i_offset,
output signed[15:0]o_fir,
output signed[15:0]o_carrier,
output signed[31:0]o_signal,

output signed[31:0]o_cos_dw,
output signed[31:0]o_cos_demod,
output signed[31:0]o_nco
);

//调制端
signal_gen signal_gen_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_bits (i_bits),
.i_offset (i_offset),
.o_fir (o_fir),
.o_carrier(o_carrier),
.o_mod (o_signal)
);

/

//解调端 ,考虑载波costas同步
costas_loop costas_loopu(
.i_clk (i_clk),
.i_rst (i_rst),
.i_start (i_start),
.o_signal (o_signal),

.o_cos_dw (o_cos_dw),
.o_cos_demod (o_cos_demod),
.o_nco (o_nco)
);

endmodule
```

相关文章
|
10月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
9月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
9月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
178 0
|
9月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
11月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
11月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
396 74
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
520 69
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
438 26
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
409 8

热门文章

最新文章