港大阿里“视觉AI任意门”,一键向场景中无缝传送物体

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 本文主要展示了阿里和港大的AI版「任意门」,实现零样本的图像嵌入。

点两下鼠标,就能把物体无缝「传送」到照片场景中,光线角度和透视也能自动适应。

阿里和港大的这个AI版「任意门」,实现了零样本的图像嵌入。

有了它,网购衣服也可以直接看上身效果了。

因为功能和任意门十分相似,所以研发团队给它起的名字就叫AnyDoor。

AnyDoor一次能够传送多个物体。

不仅如此,它还能移动图像里的已有物品。

有网友看了之后赞叹到,或许接下来就会进化到(把物体传入到)视频了。

零样本生成逼真效果

相对于已有的类似模型,AnyDoor具有零样本操作能力,无需针对具体物品调整模型。

除了这些需要进行参数调节的模型之外,AnyDoor相对于其他Reference类模型也更为准确。

实际上,其他的Reference类模型只能做到保持语义一致性。

通俗地说,如果要传送的物体是一只猫,其他模型只能保证结果中也有一只猫,但相似度无法保证。

我们不妨把AnyDoor的效果放大看看,是不是看不出什么破绽?

用户评价的结果也证实,AnyDoor在质量和准确度方面表现均优于现有模型(满分4分)。

而对于已有图像中物体的移动、换位,甚至改变姿态,AnyDoor也能出色完成。

那么,AnyDoor是如何实现这些功能的呢?

工作原理

要想实现物体的传送,首先就要对其进行提取。

不过在将包含目标物体的图像送入提取器之前,AnyDoor首先会对其进行背景消除。

然后,AnyDoor会进行自监督式的物体提取并转换成token。

这一步使用的编码器是以目前最好的自监督模型DINO-V2为基础设计的。

为了适应角度和光线的变化,除了提取物品的整体特征,还需要额外提取细节信息。

这一步中,为了避免过度约束,团队设计了一种用高频图表示特征信息的方式。

将目标图像与Sobel算子等高通滤波器进行卷积,可以得到含高频详情的图像。

同时,AnyDoor利用Hadamard对图像中的RGB色彩信息进行提取。

结合这些信息和过滤边缘信息的遮罩,得到了只含高频细节的HF-Map。

最后一步就是将这些信息进行注入。

利用获取到的token,AnyDoor通过文生图模型对图像进行合成。

具体来说,AnyDoor使用的是带有ControlNet的Stable Diffusion。

AnyDoor的工作流程大致就是这样。而在训练方面,也有一些特殊的策略。

△AnyDoor使用的训练数据集

尽管AnyDoor针对的是静态图像,但有一部分用于训练的数据是从视频当中提取出来的。

对于同一物体,视频当中可以提取出包含不同背景的图像。

将物体与背景分离后标注配对,就形成了AnyDoor的训练数据。

不过虽然视频数据有利于学习,但还存在质量问题需要解决。

于是团队设计了自适应时间步采样策略,在不同时刻分别采集变化和细节信息。

通过消融实验结果可以看出,随着这些策略的加入,CLIP和DINO评分均逐渐升高。

团队简介

论文的第一作者是香港大学博士生陈汐(Xi Chen),他曾经是阿里巴巴集团算法工程师。

陈汐的导师Hengshuang Zhao是本文的通讯作者,研究领域包括机器视觉、机器学习等。

此外,阿里方面还有来自达摩院、菜鸟集团的研究人员也参与了这一项目。

论文地址:

https://arxiv.org/abs/2307.09481


本文转发自量子位公众号。

相关文章
|
2天前
|
人工智能 UED
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
VersaGen 是一款生成式 AI 代理,专注于文本到图像合成中的视觉控制能力,支持多种视觉控制类型,并通过优化策略提升图像生成质量和用户体验。
20 8
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
|
4天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
60 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
14天前
|
存储 人工智能 安全
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
|
15天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
80 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
14天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
72 10
|
14天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
70 10
|
8天前
|
人工智能 API 数据库
Browser Use:开源 AI 浏览器助手,自动完成网页交互任务,支持多标签页管理、视觉识别和内容提取等功能
Browser Use 是一款专为大语言模型设计的智能浏览器工具,支持多标签页管理、视觉识别、内容提取等功能,并能记录和重复执行特定动作,适用于多种应用场景。
135 0
Browser Use:开源 AI 浏览器助手,自动完成网页交互任务,支持多标签页管理、视觉识别和内容提取等功能
|
11天前
|
机器学习/深度学习 人工智能 安全
合合信息亮相CSIG AI可信论坛,全面拆解视觉内容安全的“终极防线”!
合合信息在CSIG AI可信论坛上,全面拆解了视觉内容安全的“终极防线”。面对AI伪造泛滥的问题,如Deepfake换脸、PS篡改等,合合信息展示了其前沿技术,包括通用PS检测系统和AIGC与换脸检测系统,有效应对视觉内容安全挑战。公司在国际赛事中屡获殊荣,并联合多方发布《文本图像篡改检测系统技术要求》,推动行业标准化发展。通过技术创新,合合信息为金融、政企等领域提供可靠保障,守护社会信任,引领视觉内容安全新方向。
30 0
|
机器学习/深度学习 新零售 人工智能
阿里云高校计划视觉AI五天训练营 Day 1——视觉应用探索
在这个人工智能已经普及的时代,各行各业都充斥着AI的身影。大部分人认为人工智能起点高,入门难,想要使用AI服务又无法独立完成编写,开发者可以通过阿里云视觉平台提供的通用且标准化的接入方式,快速接入及使用阿里云视觉平台提供的包括人脸人体、文字识别、商品理解、内容安全、图像识别、图像生产、分割抠图、视觉搜索、目标检测、图像分析处理、视频理解、视频生产、视频分割13个类目多个API能力,为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术的应用能力的综合性视觉AI能力平台。
1304 0
阿里云高校计划视觉AI五天训练营 Day 1——视觉应用探索
|
人工智能 前端开发 算法
视觉AI五天训练营教程 Day 3
简介: 在这个人工智能已经普及的时代,各行各业都充斥着AI的身影。大部分人认为人工智能起点高,入门难,想要使用AI服务又无法独立完成编写,阿里云视觉平台是基于阿里巴巴视觉智能技术实践经验,面向视觉智能技术企业和开发商(含开发者),为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术的应用能力的综合性视觉AI能力平台。开发者可以通过阿里云视觉平台提供的通用且标准化的接入方式,快速接入及使用阿里云视觉平台提供的包括人脸人体、文字识别、商品理解、内容安全、图像识别、图像生产、分割抠图、视觉搜索、目标检测、图像分析处理、视频理解、视频生产、视频分割13个类目多个API能力。本期直播将带你
580 0
视觉AI五天训练营教程 Day 3

热门文章

最新文章