Linux内核基础篇——常用调试技巧汇总

简介: Linux内核基础篇——常用调试技巧汇总

printk

printk共有8个等级,从0-7,等级依次降低。

打印等级可以通过修改/proc/sys/kernel/printk来改变。

查看printk等级:

cat /proc/sys/kernel/printk
7 4 1 7

打开内核所有打印:

echo 8 > /proc/sys/kernel/printk

具体内容:

Linux内核基础篇——printk

动态输出

printk打印是全局的,使用动态输出则可以有选择地输出某个模块或某个子系统的打印,pr_debug()就是使用了动态输出。

打开svcsock.c文件中所有的动态输出语句

# echo 'file svcsock.c +p' > /sys/kernel/debug/dynamic_debug/control

打开usbcore模块中所有的动态输出语句

# echo 'module usbcore +p' > /sys/kernel/debug/dynamic_debug/control

打开svc_process()函数中所有的动态输出语句

# echo 'func svc_process() +p' > /sys/kernel/debug/dynamic_debug/control

打开文件路径包含usb的文件里所有的动态输出语句

# echo -n '*usb* +p' > /sys/kernel/debug/dynamic_debug/control

打开系统所有的动态输出语句

# echo -n '+p' > /sys/kernel/debug/dynamic_debug/control

具体内容:

Linux内核基础篇——动态输出调试

BUG()和BUG_ON()

在内核中经常看到BUG()和BUG_ON()宏,这也是内核调试常用的技巧之一。

#<include/asm-generic/bug.h>
#define BUG_ON(condition) do { if (unlikely(condition)) BUG();} while(0)
#define BUG() do { \
 printk("BUG:failure at %s:%d/%s()!\n",__FILE__, __LINE__, __func__); \
    panic("BUG!"); \
}while(0)

对于BUG_ON()宏来说,满足条件(condition)就会触发BUG()宏,它会使用panic()函数来主动让系统宕机。通常只有一些内核的bug才会触发BUG_ON()宏,在实际产品中使用该宏需要小心谨慎。

WARN_ON()宏相对会好一些,不会触发panic()函数,使系统主动宕机,但会输出函数调用栈信息,提示开发者可能发生了一些不好的事情。

dump_stack()

dump_stack()用于打印函数的调用关系,例如,在驱动的入口处添加一句dump_stack():

static int __init hello_init(void)
{
......
 dump_stack();
......
 return 0;
}

dump_stack()打印的信息:

dump_stack()打印的函数调用关系,需要从下往上看:

ret_fast_syscall->sys_finit_module->load_module->do_init_module->do_one_initcall->hello_init

通过调用关系看出,驱动入口函数hello_init,是由do_init_module调用do_one_initcall,然后再调用到了hello_init。

devmem

通常在Linux驱动中操作寄存器,需要先通过ioremap映射寄存器基地址,转为虚拟地址后才可进行访问。

而devmem可以直接对寄存器进行读写操作,而不需要专门写一个驱动这么麻烦,这在调试的时候很有用。

devmem命令格式:

Usage: devmem ADDRESS [WIDTH [VALUE]]
Read/write from physical address
 ADDRESS Address to act upon
 WIDTH Width (8/16/...)
 VALUE Data to be written

ADDRESS:物理地址

WIDTH:位宽,32位、64位等等

VALUE:要写入的值

例如,读取32位寄存器0x40200000的值:

devmem 0x40200000 32

向32位寄存器0x40200000写入0x12345678

devmem 0x40200000 32 0x12345678

具体内容:

内核调试之devmem直接读写寄存器

end

猜你喜欢

Linux内核基础篇——动态输出调试

Linux内核基础篇——printk调试

Linux内核基础篇——initcall

RISC-V SiFive U64内核——HPM硬件性能监视器

RISC-V SiFive U64内核——L2 Prefetcher预取器

RISC-V SiFive U54内核——PMP物理内存保护

RISC-V SiFive U54内核——PLIC平台级中断控制器

RISC-V SiFive U54内核——CLINT中断控制器

RISC-V SiFive U54内核——中断和异常详解

实战 | RISC-V Linux入口地址2M预留内存优化

RISC-V Linux启动之页表创建分析

RISC-V Linux汇编启动过程分析

RISC-V 入门笔记(新手必看!)

教你在QEMU上运行RISC-V Linux

OpenSBI三种固件的区别

写给新手的MMU工作原理

相关文章
|
16天前
|
存储 Linux 调度
深入理解Linux内核:从用户空间到内核空间的旅程
【8月更文挑战第4天】在这篇文章中,我们将探索Linux操作系统的核心—内核。通过了解内核如何管理硬件资源,以及它是如何在用户空间和内核空间之间架起桥梁的,我们可以更好地理解操作系统的工作原理。本文将介绍一些关键概念,并通过代码示例来揭示这些概念是如何在实际中应用的。无论你是开发者、系统管理员还是对操作系统感兴趣的爱好者,这篇文章都将为你提供一个深入了解Linux内核的机会。让我们开始这段旅程吧!
|
2月前
|
Linux API 调度
技术笔记:Linux内核跟踪和性能分析
技术笔记:Linux内核跟踪和性能分析
|
2天前
|
Ubuntu Linux Windows
如何在WSL中的ubuntu编译Linux内核并且安装使用ebpf?
请注意,在WSL1中可能会由于内核架构限制而无法成功进行以上过程,WSL2对于Linux内核的完整支持更为合适。此外,部分步骤可能因不同的Linux发行版或内核版本而异。
9 4
|
1天前
|
Linux 开发者
Linux的诞生:Linus Torvalds的“惊天一敲”与Linux内核的“首秀”
在科技界璀璨星辰中,Linus Torvalds以一次“惊天一敲”悄然点燃了革命之火——Linux就此诞生。1991年,不满现状的Linus决定创造更好的操作系统,这一敲不仅开启了个人传奇,更奏响了技术革新的序章。他将Linux内核低调发布网络,随即吸引了全球开发者的目光与贡献,使之迅速成长为开源世界的巨星。Linus的故事告诉我们:伟大创举常源于微小想法,也许下一个改变世界的“一敲”就出自你手。
14 1
|
16天前
|
Ubuntu Linux 开发工具
深入探索Linux内核模块编程
【8月更文挑战第4天】在这篇文章中,我们不仅将探讨Linux内核模块的基础知识,还将通过一个实际的例子来展示如何编写一个简单的内核模块。我们将从理论出发,逐步过渡到动手实践,最终实现一个可以在Linux系统上运行的模块。文章的目标是为读者提供足够的信息和知识,以便他们能够自己编写内核模块,从而对操作系统的内部工作原理有更深入的了解。
|
17天前
|
Linux
Linux系统如何查看版本信息,内核、发行版、cpu、所有版本
Linux系统如何查看版本信息,内核、发行版、cpu、所有版本
|
18天前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。
|
14天前
|
存储 Unix Linux
揭秘Linux硬件组成:从内核魔法到设备树桥梁,打造你的超级系统,让你的Linux之旅畅通无阻,震撼体验来袭!
【8月更文挑战第5天】Linux作为顶级开源操作系统,凭借其强大的功能和灵活的架构,在众多领域大放异彩。本文首先概述了Linux的四大核心组件:内核、Shell、文件系统及应用程序,并深入探讨了内核的功能模块,如存储、CPU及进程管理等。接着介绍了设备树(Device Tree),它是连接硬件与内核的桥梁,通过DTS/DTB文件描述硬件信息,实现了跨平台兼容。此外,还简要介绍了Linux如何通过本地总线高效管理硬件资源,并阐述了文件系统与磁盘管理机制。通过这些内容,读者可以全面了解Linux的硬件组成及其核心技术。
30 3
|
20天前
|
运维 Java Linux
(九)JVM成神路之性能调优、GC调试、各内存区、Linux参数大全及实用小技巧
本章节主要用于补齐之前GC篇章以及JVM运行时数据区的一些JVM参数,更多的作用也可以看作是JVM的参数列表大全。对于开发者而言,能够控制JVM的部分也就只有启动参数了,同时,对于JVM的性能调优而言,JVM的参数也是基础。
|
15天前
|
缓存 网络协议 Unix
Linux 内核参数
Linux 内核参数
17 1

热门文章

最新文章