实战 | RISC-V Linux入口地址2M预留内存优化

简介: 实战 | RISC-V Linux入口地址2M预留内存优化

上篇分析了RISC-V Linux启动的页表创建,提到RISC-V Linux入口地址必须2M对齐,今天讲讲如何解决2M对齐的问题,或者说如何优化部分内存。

注意:本文基于linux5.10.111内核

内存占用分析

每颗芯片在出厂时,其bootrom就已经固化在芯片内部,假设bootrom的地址是0x0,即上电后,会从0x0地址处开始运行程序。

在启动RISC-V Linux之前,需要先运行opensbi,因此应该把opensbi放到地址0x0处,这样芯片上电后,就会从0x0地址处执行opensbi。在opensbi运行完后,会跳转到opensbi运行地址偏移2M的位置去执行下一级boot(这里下一级boot是kernel),即跳转到0x200000地址处运行kernel,因此应该把kernel放到内存的0x200000处。

内存分布示意图如下:

对于kernel来说,在启动时会从自己的kernel加载地址处(即0x200000)开始建立页表映射,只有对物理内存建立了页表映射,后面才能访问这些内存。而kernel加载地址前面的2M内存(即0x0 - 0x200000)将被kernel忽略,不会对这2M内存建立页表,即kernel无法访问这2M内存。

在QEMU上RISC-V Linux的启动信息:

但opensbi实际不需要使用2M这么大的范围,默认是512KB,opensbi的pmp会保护这512KB内存,不让其他程序访问。

因此在Kernel和opensbi之间会存在1.5M的内存空隙,并且这部分内存空隙没有程序使用,这就会造成内存浪费,那如何让kernel将前面的一部分内存也利用起来呢?

优化方案

对这2M内存的优化,有两种方案:

方案一:将opensbi放到内存的最后面,kernel入口地址仍然保持2M对齐。

方案二:opensbi仍然放到内存的起始位置,通过修改内核源码,解除2M对齐限制,即可将kernel地址往前挪。

方案一

我们将opensbi放到内存的最后面,kernel入口地址仍然保持2M对齐。

即kernel放到内存的最前面,opensbi放到后面:

例如kernel放到内存的0x0地址处,opensbi放到内存的0x10000000地址处。这样kernel前面就不会有预留内存,只不过这样需要修改bootrom的地址,将地址从0x0修改为0x0x10000000。这种方案只适合芯片还没出厂前,因为用户无法修改bootrom的地址,芯片出厂后,bootrom地址是固定的,假设bootrom地址为0x0,那么芯片上电后,就会从0x0开始运行程序,所以opensbi必须放到0x0地址处,这样必然kernel只能往后偏移2M。

方案二

我们也可以修改RISC-V Linux的内核源码,解除2M对齐的限制。我们只需要在setup_vm()函数中,将原来的二级页表改为三级页表,这样kernel入口地址只需要4K对齐,因此就能将kernel往前挪,从而利用前面的内存。

修改代码

路径:arch/riscv/mm/init.c

注释原来的2M对齐检查:

对kernel的前2M页表映射由二级页表改为三级页表:

//新增一个PTE
pte_t trampoline_pte[PTRS_PER_PTE] __page_aligned_bss;
create_pgd_mapping(trampoline_pg_dir,PAGE_OFFSET,
                   (uintptr_t)trampoline_pmd,PGDIR_SIZE,PAGE_TABLE);
create_pmd_mapping(trampoline_pmd,PAGE_OFFSET,
                   (uintptr_t)trampoline_pte,PMD_SIZE,PAGE_TABLE);
end_va = PAGE_OFFSET + PMD_SIZE;
for (va = PAGE_OFFSET; va < end_va; va += PAGE_SIZE)
{
    create_pte_mapping(trampoline_pte,PAGE_OFFSET,
                   load_pa + (va - PAGE_OFFSET),
                       PAGE_SIZE,PAGE_KERNEL_EXEC);
}

对整个kernel的页表映射由二级页表改为三级页表:

假设kernel大小为4M+

//定义三个PTE
pte_t load_sz_pte[PTRS_PER_PTE] __page_aligned_bss;
pte_t load_sz_pte1[PTRS_PER_PTE] __page_aligned_bss;
pte_t load_sz_pte2[PTRS_PER_PTE] __page_aligned_bss;
//=======0-2M======
create_pgd_mapping(early_pg_dir,PAGE_OFFSET,
                   (uintptr_t)early_pmd,PGDIR_SIZE,PAGE_TABLE);
create_pmd_mapping(early_pmd,PAGE_OFFSET,
                   (uintptr_t)load_sz_pte,PMD_SIZE,PAGE_TABLE);
end_va = PAGE_OFFSET + PMD_SIZE;
for (va = PAGE_OFFSET; va < end_va; va += PAGE_SIZE)
{
    create_pte_mapping(load_sz_pte,PAGE_OFFSET,
                   load_pa + (va - PAGE_OFFSET),
                       PAGE_SIZE,PAGE_KERNEL_EXEC);
}
//=======2-4M==========
create_pgd_mapping(early_pg_dir,PAGE_OFFSET + PMD_SIZE,
                   (uintptr_t)early_pmd,PGDIR_SIZE,PAGE_TABLE);
create_pmd_mapping(early_pmd,PAGE_OFFSET,
                   (uintptr_t)load_sz_pte1,PMD_SIZE,PAGE_TABLE);
end_va = PAGE_OFFSET + (PMD_SIZE * 2);
for (va = PAGE_OFFSET + PMD_SIZE; va < end_va; va += PAGE_SIZE)
{
    create_pte_mapping(load_sz_pte1,va,
                   load_pa + (va - PAGE_OFFSET),
                       PAGE_SIZE,PAGE_KERNEL_EXEC);
}
//=======4-6M==========
create_pgd_mapping(early_pg_dir,PAGE_OFFSET + (PMD_SIZE*2),
                   (uintptr_t)early_pmd,PGDIR_SIZE,PAGE_TABLE);
create_pmd_mapping(early_pmd,PAGE_OFFSET,
                   (uintptr_t)load_sz_pte2,PMD_SIZE,PAGE_TABLE);
end_va = PAGE_OFFSET + (PMD_SIZE * 3);
for (va = PAGE_OFFSET + (PMD_SIZE*2); va < end_va; va += PAGE_SIZE)
{
    create_pte_mapping(load_sz_pte2,va,
                   load_pa + (va - PAGE_OFFSET),
                       PAGE_SIZE,PAGE_KERNEL_EXEC);
}

通过以上的代码修改,就能将Kernel入口地址往前挪1.5M,只给opensbi预留512KB,这样RISC-V Linux启动之后,可用物理内存就会增加。

总结

RISC-V Linux入口地址2M对齐的操作目前还没看到有人解释,不过应该就是为了给opensbi预留2M,于是kernel只建立了二级页表,使得入口地址必须2M对齐。对这部分内存的优化解决方案,目前也还没人给出,希望本文的优化方案能够帮助到有些人,也希望能够给大家一些启发。

猜你喜欢:

RISC-V Linux启动之页表创建分析

RISC-V Linux汇编启动过程分析

RISC-V 入门笔记(新手必看!)

写给新手的MMU工作原理

OpenSBI三种固件的区别

内核调试之devmem直接读写寄存器

教你在QEMU上运行RISC-V Linux

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
2月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
536 6
|
2月前
|
缓存 Java Linux
如何解决 Linux 系统中内存使用量耗尽的问题?
如何解决 Linux 系统中内存使用量耗尽的问题?
151 48
|
28天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
102 7
|
2月前
|
缓存 Ubuntu Linux
Linux环境下测试服务器的DDR5内存性能
通过使用 `memtester`和 `sysbench`等工具,可以有效地测试Linux环境下服务器的DDR5内存性能。这些工具不仅可以评估内存的读写速度,还可以检测内存中的潜在问题,帮助确保系统的稳定性和性能。通过合理配置和使用这些工具,系统管理员可以深入了解服务器内存的性能状况,为系统优化提供数据支持。
43 4
|
2月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
2月前
|
缓存 Linux
如何检查 Linux 内存使用量是否耗尽?
何检查 Linux 内存使用量是否耗尽?
|
2月前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
2月前
|
存储 算法 安全
深入理解Linux内核的内存管理机制
本文旨在深入探讨Linux操作系统内核的内存管理机制,包括其设计理念、实现方式以及优化策略。通过详细分析Linux内核如何处理物理内存和虚拟内存,揭示了其在高效利用系统资源方面的卓越性能。文章还讨论了内存管理中的关键概念如分页、交换空间和内存映射等,并解释了这些机制如何协同工作以提供稳定可靠的内存服务。此外,本文也探讨了最新的Linux版本中引入的一些内存管理改进,以及它们对系统性能的影响。
|
2月前
|
存储 缓存 监控

热门文章

最新文章