聊聊 Kafka:Producer 源码解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 聊聊 Kafka:Producer 源码解析

一、前言

前面几篇我们讲了关于 Kafka 的基础架构以及搭建,从这篇开始我们就来源码分析一波。我们这用的 Kafka 版本是 2.7.0,其 Client 端是由 Java 实现,Server 端是由 Scala 来实现的,在使用 Kafka 时,Client 是用户最先接触到的部分,因此,我们从 Client 端开始,会先从 Producer 端开始,今天我们就来对 Producer 源码解析一番。

二、Producer 使用

首先我们先通过一段代码来展示 KafkaProducer 的使用方法。在下面的示例中,我们使用 KafkaProducer 实现向 Kafka 发送消息的功能。在示例程序中,首先将 KafkaProduce 使用的配置写入到 Properties 中,每项配置的具体含义在注释中进行解释。之后以此 Properties 对象为参数构造 KafkaProducer 对象,最后通过 send 方法完成发送,代码中包含同步发送、异步发送两种情况。

从上面的代码可以看出 Kafka 为用户提供了非常简洁方便的 API,在使用时,只需要如下两步:

  • 初始化 KafkaProducer 实例
  • 调用 send 接口发送数据

本文主要是围绕着初始化 KafkaProducer 实例与如何实现 send 接口发送数据而展开的。

三、KafkaProducer 实例化

了解了 KafkaProducer 的基本使用,然后我们来深入了解下方法核心逻辑:

public KafkaProducer(Properties properties) {
    this(Utils.propsToMap(properties), (Serializer)null, (Serializer)null, (ProducerMetadata)null, (KafkaClient)null, (ProducerInterceptors)null, Time.SYSTEM);
}

四、消息发送过程

用户是直接使用 producer.send() 发送的数据,先看一下 send() 接口的实现

// 异步向一个 topic 发送数据
public Future<RecordMetadata> send(ProducerRecord<K, V> record) {
    return this.send(record, (Callback)null);
}
// 向 topic 异步地发送数据,当发送确认后唤起回调函数
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
    ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);
    return this.doSend(interceptedRecord, callback);
}

数据发送的最终实现还是调用了 Producer 的 doSend() 接口。

4.1 拦截器

首先方法会先进入拦截器集合 ProducerInterceptors , onSend 方法是遍历拦截器 onSend 方 法,拦截器的目的是将数据处理加工, Kafka 本身并没有给出默认的拦截器的实现。如果需要使用拦截器功能,必须自己实现接口。

4.1.1 拦截器代码

4.1.2 拦截器核心逻辑

ProducerInterceptor 接口包括三个方法:

  • onSend(ProducerRecordvar1):该方法封装进 KafkaProducer.send 方法中,即它运行在用户主线程中的。确保在消息被序列化以计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的 topic 和分区,否则会影响目标分区的计算。
  • onAcknowledgement(RecordMetadata var1, Exception var2):该方法会在消息被应答之前或消息发送失败时调用,并且通常都是在 producer 回调逻辑触发之前。onAcknowledgement 运行在 producer 的 IO 线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢 producer 的消息发送效率。
  • close():关闭 interceptor,主要用于执行一些资源清理工作。

拦截器可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个 interceptor,则 producer 将按照指定顺序调用它们,并仅仅是捕获每个 interceptor 可能抛出的异常记录到错误日志中而非在向上传递。

4.2 Producer 的 doSend 实现

下面是 doSend() 的具体实现:

在 doSend() 方法的实现上,一条 Record 数据的发送,主要分为以下五步:

  • 确认数据要发送到的 topic 的 metadata 是可用的(如果该 partition 的 leader 存在则是可用的,如果开启权限时,client 有相应的权限),如果没有 topic 的 metadata 信息,就需要获取相应的 metadata;
  • 序列化 record 的 key 和 value;
  • 获取该 record 要发送到的 partition(可以指定,也可以根据算法计算);
  • 向 accumulator 中追加 record 数据,数据会先进行缓存;
  • 如果追加完数据后,对应的 RecordBatch 已经达到了 batch.size 的大小(或者 batch 的剩余空间不足以添加下一条 Record),则唤醒 sender 线程发送数据。

数据的发送过程,可以简单总结为以上五点,下面会这几部分的具体实现进行详细分析。

五、消息发送过程

5.1 获取 topic 的 metadata 信息

Producer 通过 waitOnMetadata() 方法来获取对应 topic 的 metadata 信息,这块内容我下一篇再来讲。

5.2 key 和 value 的序列化

Producer 端对 record 的 key 和 value 值进行序列化操作,在 Consumer 端再进行相应的反序列化,Kafka 内部提供的序列化和反序列化算法如下图所示:

当然我们也是可以自定义序列化的具体实现,不过一般情况下,Kafka 内部提供的这些方法已经足够使用。

5.3 获取该 record 要发送到的 partition

获取 partition 值,具体分为下面三种情况:

  • 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  • 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  • 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

具体实现如下:

// 当 record 中有 partition 值时,直接返回,没有的情况下调用 partitioner 的类的 partition 方法去计算(KafkaProducer.class)
private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
    Integer partition = record.partition();
    return partition != null ? partition : this.partitioner.partition(record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
}

Producer 默认使用的 partitioner 是 org.apache.kafka.clients.producer.internals.DefaultPartitioner,用户也可以自定义 partition 的策略,下面是默认分区策略具体实现:

public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
    return this.partition(topic, key, keyBytes, value, valueBytes, cluster, cluster.partitionsForTopic(topic).size());
}
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster, int numPartitions) {
    return keyBytes == null ? this.stickyPartitionCache.partition(topic, cluster) : Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}

上面这个默认算法核心就是粘着分区缓存

5.4 向 RecordAccmulator 中追加 record 数据

我们讲 RecordAccumulator 之前先看这张图,这样的话会对整个发送流程有个大局观。


RecordAccmulator 承担了缓冲区的角色。默认是 32 MB。

在 Kafka Producer 中,消息不是一条一条发给 broker 的,而是多条消息组成一个 ProducerBatch,然后由 Sender 一次性发出去,这里的 batch.size 并不是消息的条数(凑满多少条即发送),而是一个大小。默认是 16 KB,可以根据具体情况来进行优化。

在 RecordAccumulator 中,最核心的参数就是:

private final ConcurrentMap<TopicPartition, Deque<ProducerBatch>> batches;

它是一个 ConcurrentMap,key 是 TopicPartition 类,代表一个 topic 的一个 partition。value 是一个包含 ProducerBatch 的双端队列。等待 Sender 线程发送给 broker。画张图来看下:

上面的代码不知道大家有没有疑问?分配内存的代码为啥不在 synchronized 同步块中分配?导致下面的 synchronized 同步块中还要 tryAppend 一下。

因为这时候可能其他线程已经创建好 RecordBatch 了,造成多余的内存申请。

如果把分配内存放在 synchronized 同步块会有什么问题?

内存申请不到线程会一直等待,如果放在同步块中会造成一直不释放 Deque 队列的锁,那其他线程将无法对 Deque 队列进行线程安全的同步操作。

再跟下 tryAppend() 方法,这就比较简单了。

以上代码见图解:


5.5 唤醒 sender 线程发送 RecordBatch

当 record 写入成功后,如果发现 RecordBatch 已满足发送的条件(通常是 queue 中有多个 batch,那么最先添加的那些 batch 肯定是可以发送了),那么就会唤醒 sender 线程,发送 RecordBatch。

sender 线程对 RecordBatch 的处理是在 run() 方法中进行的,该方法具体实现如下:


其中比较核心的方法是 run() 方法中的 org.apache.kafka.clients.producer.internals.Sender#sendProducerData

其中 pollTimeout 意思是最长阻塞到至少有一个通道在你注册的事件就绪了。返回 0 则表示走起发车了。

我们继续跟下:org.apache.kafka.clients.producer.internals.RecordAccumulator#ready

最后再来看下里面这个方法 org.apache.kafka.clients.producer.internals.RecordAccumulator#drain,从accumulator 缓冲区获取要发送的数据,最大一次性发 max.request.size 大小的数据。


六、总结

最后为了让你对 Kafka Producer 有个宏观的架构理解,请看下图:


简要说明:

  • new KafkaProducer() 后创建一个后台线程 KafkaThread (实际运行线程是 Sender,KafkaThread 是对 Sender 的封装) 扫描 RecordAccumulator 中是否有消息。
  • 调用 KafkaProducer.send() 发送消息,实际是将消息保存到 RecordAccumulator 中,实际上就是保存到一个 Map 中 (ConcurrentMap<topicpartition, deque
  • 后台的独立线程扫描到 RecordAccumulator 中有消息后,会将消息发送到 Kafka 集群中 (不是一有消息就发送,而是要看消息是否 ready)
  • 如果发送成功 (消息成功写入 Kafka), 就返回一个 RecordMetaData 对象,它包括了主题和分区信息,以及记录在分区里的偏移量。
  • 如果写入失败,就会返回一个错误,生产者在收到错误之后会尝试重新发送消息 (如果允许的话,此时会将消息在保存到 RecordAccumulator 中),几次之后如果还是失败就返回错误消息。

好了,本文对 Kafka Producer 源码进行了解析,下一篇文章将会详细介绍 metadata 的内容以及在 Producer 端 metadata 的更新机制。敬请期待~



欢迎大家关注我的公众号【老周聊架构】,Java后端主流技术栈的原理、源码分析、架构以及各种互联网高并发、高性能、高可用的解决方案。


喜欢的话,点赞、再看、分享三连。

相关文章
|
3天前
|
存储 安全 Java
深度长文解析SpringWebFlux响应式框架15个核心组件源码
以上是Spring WebFlux 框架核心组件的全部介绍了,希望可以帮助你全面深入的理解 WebFlux的原理,关注【威哥爱编程】,主页里可查看V哥每天更新的原创技术内容,让我们一起成长。
|
4天前
|
关系型数据库 分布式数据库 数据库
PolarDB-X源码解析:揭秘分布式事务处理
【7月更文挑战第3天】**PolarDB-X源码解析:揭秘分布式事务处理** PolarDB-X,应对大规模分布式事务挑战,基于2PC协议确保ACID特性。通过预提交和提交阶段保证原子性与一致性,使用一致性快照隔离和乐观锁减少冲突,结合故障恢复机制确保高可用。源码中的事务管理逻辑展现了优化的分布式事务处理流程,为开发者提供了洞察分布式数据库核心技术的窗口。随着开源社区的发展,更多创新实践将促进数据库技术进步。
11 3
|
8天前
|
消息中间件 Kafka 程序员
Kafka面试必备:深度解析Replica副本的作用与机制
**Kafka的Replica副本是保证数据可靠性的关键机制。每个Partition有Leader和Follower副本,Leader处理读写请求及管理同步,Follower被动同步并准备成为新Leader。从Kafka 2.4开始,Follower在完全同步时也可提供读服务,提升性能。数据一致性通过高水位机制和Leader Epoch机制保证,后者更精确地判断和恢复数据一致性,增强系统容错能力。**
13 1
|
9天前
|
消息中间件 监控 Kafka
深入解析:Kafka 为何不支持全面读写分离?
**Kafka 2.4 引入了有限的读写分离,允许Follower处理只读请求,以缓解Leader压力。但这不适用于所有场景,特别是实时数据流和日志分析,因高一致性需求及PULL同步方式导致的复制延迟,可能影响数据实时性和一致性。在设计系统时需考虑具体业务需求。**
11 1
|
5天前
|
前端开发 开发者
深入解析Vite.js源码
【7月更文挑战第1天】Vite.js 深入解析:以其无bundle开发、动态ES模块加载提升开发效率;本地HTTP服务器配合WebSocket实现热更新;按需加载减少资源占用;预构建优化生产环境性能;基于Rollup的插件系统增强灵活性。Vite,一个创新且高效的前端构建工具。
14 0
|
10天前
|
Java 容器 Spring
Spring5源码解析5-ConfigurationClassPostProcessor (上)
Spring5源码解析5-ConfigurationClassPostProcessor (上)
|
21天前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之通过flink同步kafka数据进到doris,decimal数值类型的在kafka是正常显示数值,但是同步到doris表之后数据就变成了整数,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
21天前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之 从Kafka读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
20天前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
780 0
|
11天前
|
Java
使用kafka-clients操作数据(java)
使用kafka-clients操作数据(java)
14 6

推荐镜像

更多