【Vue源码解析】Vue虚拟dom和diff算法

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 【Vue源码解析】Vue虚拟dom和diff算法

Vue虚拟dom和diff算法

🎞️🎞️🎞️ 博主主页: 糖 -O-


👉👉👉 react专栏:vue源码解析


🌹🌹🌹希望各位博主多多支持!!!

1. 简介

关系

diff是发生在虚拟DOM上的新虚拟DOM和旧虚拟DOM进行diff(精细化比较),算出应该如何最小量更新,最后反映到真正的DOM上

diff算法

  • diff算法是虚拟DOM技术的产物,vue里面实际叫做patch,它的核心实现来自于snabbdom;通过新旧虚拟DOM作对比(即patch),将变化的地方转换为DOM操作
  • 组件中数据发生变化时,对应的watcher会通知更新并执行其更新函数,它会执行渲染函数获取全新虚拟dom:newVnode,此时就会执行patch比对上次渲染结果oldVnode和新的渲染结果newVnode。
  • patch过程遵循深度优先、同层比较的策略;两个节点之间比较时,如果它们拥有子节点,会先比较子节点;比较两组子节点时,会假设头尾节点可能相同先做尝试,没有找到相同节点后才按照通用方式遍历查找;查找结束再按情况处理剩下的节点;借助key通常可以非常精确找到相同节点,因此整个patch过程非常高效。

✨✨✨ key的作用: key的作用主要是为了更高效的更新虚拟DOM。

从源码中可以知道,vue判断两个节点是否相同时主要判断两者的key和元素类型等,因此如果不设置key,它的值就是undefined,则可能永远认为这是两个相同节点,只能去做更新操作,这造成了大量的dom更新操作,明显是不可取的。


2. 搭建环境

1. 安装snabbdom
npm install -S snabbdom

2. 安装webpack5并配置

npm i -D webpack@5 webpack-cli@3 webpack-dev-server@3
//  配置webpack
module.exports = {
  // webpack5 不用配置mode
  // 入口
  entry: "./src/index.js",
  // 出口
  output: {
    // 虚拟打包路径,文件夹不会真正生成,而是在8080端口虚拟生成
    publicPath: "xuni",
    // 打包出来的文件名
    filename: "bundle.js",
  },
  // 配置webpack-dev-server
  devServer: {
    // 静态根目录
    contentBase: 'www',
    // 端口号
    port: 8080,
  },
};


3、函数

3.1 虚拟节点vnode的属性
   {
    children: undefined// 子元素 数组
    data: {} // 属性、样式、key
    elm: undefined // 对应的真正的dom节点(对象),undefined表示节点还没有上dom树
    key: // 唯一标识
    sel: "" // 选择器
    text: "" // 文本内容
  }

3.2 使用h函数 创建虚拟节点

// 创建虚拟节点
var myVnode1 = h('a', { props: { href: 'https://www.baidu.com' } }, 'YK菌')
console.log(myVnode1)

3.3 使用patch函数 将虚拟节点上DOM树

// 创建patch函数
const patch = init([
  classModule,
  propsModule,
  styleModule,
  eventListenersModule,
]);
// 创建虚拟节点
var myVnode1 = h(
  "a",
  { props: { href: "https://www.baidu.com", target: "_blank" } },
  "YK菌"
);
// 让虚拟节点上树
let container = document.getElementById("container");
patch(container, myVnode1);

3.4 h函数嵌套使用,得到虚拟DOM树(重要)

const myVnode3 = h('ul', [
  h('li', '苹果'),
  h('li', '香蕉'),
  h('li', '西瓜'),
  h('li', '番茄'),
])
// 让虚拟节点上树
let container = document.getElementById("container");
patch(container, myVnode3);

将传入的参数组合成对象返回

  产生虚拟节点

  将传入的参数组合成对象返回

  @param {string} sel 选择器

  @param {object} data 属性、样式

  @param {Array} children 子元素

  @param {string|number} text 文本内容

  @param {object} elm 对应的真正的dom节点(对象),undefined表示节点还没有上dom树

  @returns


3.5 patchVnode函数

👉👉👉patchVnode

是用于比较两个相同节点的子级(文本,或子节点)的一个函数。故它的调用总是在sameVnode判断之后。只有判断当前比较的两个vnode相同时(这里我最后再解释一次,两个vnode相同仅仅代表key相同且sel选择器相同),才会被执行。

作用:对比新旧两个节点,更新dom的子级(子级包含文本或者是子节点)

1、如果新vnode有text属性

旧vnode是否有子节点,如果有,代表原来是子节点,现在变成文本了,那么删除子节点,并且设置vnode对象的真实dom的text值(使用setTextContent函数)

其他情况不用管,直接设置vnode对象的真实dom的text值

2、如果新vnode没有text属性

   如果新vnode和旧vnode都存在子节点时。是不是要深度对比两个vnode的子节点啊。这个时候会进入第三步,比较子节点(执行updateChildren)

   如果只有新vnode有子节点,老vnode没有,那么很简单,执行添加节点的操作

   如果只有旧vnode有子节点,新vnode没有子节点,很明显,要执行删除旧vnode子节点的操作

   如果两个vnode上都没有子节点。但旧节点有text,那么很简单,说明原来有文本,现在没有了,清空vnode对应dom的text


3.6 updateChildren

作用:用于比较新旧两个vnode的子节点

声明:下文中所指的匹配上,指的就是判断是否是sameVnode,即上文中所说的,key相同,sel选择器相同


4. 手写diff

首次上DOM树patch(container, myVnode1)

4.1

 var insertedNode = parentNode.insertBefore(newNode, referenceNode);

insertedNode :被插入节点(newNode)

parentNode :新插入节点的父节点

newNode:用于插入的节点

referenceNode :newNode 将要插在这个节点之前 在当前节点下增加一个子节点 Node,并使该子节点位于参考节点的前面。


4.2 Node.appendChild()

将一个节点附加到指定父节点的子节点列表的末尾处。

如果将被插入的节点已经存在于当前文档的文档树中,那么 appendChild() 只会将它从原先的位置移动到新的位置(不需要事先移除要移动的节点)。


4.3 Node.removeChild

从DOM中删除一个子节点。返回删除的节点
let oldChild = node.removeChild(child);
//OR
element.removeChild(child);

·child 是要移除的那个子节点.

·node 是child的父节点.

·oldChild保存对删除的子节点的引用. oldChild ===

child.

·child 是要移除的那个子节点.

·node 是child的父节点.

·oldChild保存对删除的子节点的引用.

·oldChild ===

child.


4.4 document.createElement

var element = document.createElement(tagName[, options]);

tagName:指定要创建元素类型的字符串, 创建元素时的 nodeName 使用 tagName 的值为初始化,该方法不允许使用限定名称(如:“html:a”),在 HTML 文档上调用 createElement() 方法创建元素之前会将tagName 转化成小写,在 Firefox、Opera 和 Chrome 内核中,createElement(null) 等同于 createElement(“null”)

目录
相关文章
|
7天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
23 2
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
7天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
13天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
56 8
|
13天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
45 7
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
20天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
39 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
56 5

推荐镜像

更多