使用Apache IoTDB进行IoT相关开发的架构设计与功能实现(9)

简介: GROUP BY 语句为用户提供了三种类型的指定参数: 参数1:时间轴上的显示窗口 参数2:划分时间轴的时间间隔(应为正) 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

降频聚合查询

本节主要介绍下频聚合查询的相关示例,使用分组依据子句,用于根据用户给定的分区条件对结果集进行分区,并聚合分区的结果集。IoTDB支持根据时间间隔和自定义滑动步长对结果集进行分区,不小于时间间隔,未设置则默认等于时间间隔。默认情况下,结果按时间升序排序。还可以使用Java JDBC用于执行相关查询的标准接口。

GROUP BY 语句为用户提供了三种类型的指定参数:

  • 参数1:时间轴上的显示窗口
  • 参数2:划分时间轴的时间间隔(应为正)
  • 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

这三类参数的实际含义如下图5.2所示。其中,参数 3 是可选的。接下来,我们将给出三个典型的降频聚合示例:未指定参数 3、指定参数 3 和指定值过滤条件。

图5.2 三类参数的实际含义

不指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01T00:00:00, 2017-11-07T23:00:00),1d);

这意味着:

由于用户未指定滑动步长,因此 GROUP BY 语句将默认将滑动步长设置为与时间间隔相同的时间间隔,即 。1d

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。将此参数(1d)作为时间间隔,显示窗口的开始时间作为划分原点,将时间轴划分为几个连续区间,分别是[0,1d),[1d,2d),[2d,3d)等。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07 T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 1 天有映射的数据)从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

这意味着我们希望每天从 00-00-00 到 02-59-59 获取 2017:11:01 到 2017:11:07 的所有数据。

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 3 小时有映射的数据为每天从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定值的降频聚合查询 过滤条件

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 wheretime> 2017-11-01T01:00:00 and temperature > 20 group by([2017-11-01T00:00:00, 2017-11-07T23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为(2017-11-01T01:00:00,2017-11-07T23:00:00]且满足root.ln.wf01.wt01.温度>20)范围内的数据, 并将这些数据映射到之前分段的时间轴(在这种情况下,从 3-2017-11T01:00:00 到 00-2017-11T07:23:00,每天每 00 小时都有映射的数据)。

左开和右闭合范围

SQL 语句为:

  1. selectcount(status) from root.ln.wf01.wt01 group by((5, 40], 5ms);

在此 sql 中,时间间隔为左打开和右关闭,因此我们不会包含时间戳 5 的值,而是包含时间戳 40 的值。

我们将得到如下结果:

时间 count(root.ln.wf01.wt01.status)
10 1
15 2
20 3
25 4
30 4
35 3
40 5

使用 Fill 子句的降频聚合查询

在按填充分组中,分组依据子句不支持滑动步骤

现在,分组按填充仅支持last_value聚合函数。

在按填充分组中不支持线性填充。

上一个和以前的区别
  • PREVIOUS 将填充任何空值,只要存在它之前的值不是空值。
  • PREVIOUSUNTILLAST 不会填充时间在该时间序列的最后一个时间之后的结果。

SQL 语句为:

  1. SELECTlast_value(temperature)FROM root.ln.wf01.wt01 GROUPBY([8, 39), 5m) FILL (int32[PREVIOUSUNTILLAST])

这意味着:

使用上一页填充方式填充源下频聚合查询结果。

GROUP BY 语句中 SELECT 后面的路径必须是聚合函数,否则系统会给出相应的错误提示,如下所示:

最后一点查询

在 IoT 设备快速更新数据的场景中,用户对 IoT 设备的最新点更感兴趣。

最后一个点查询是以三列格式返回给定时间序列的最新数据点。

SQL 语句定义为:

  1. select last <Path> [COMMA <Path>]* from < PrefixPath > [COMMA < PrefixPath >]* <DISABLE ALIGN>

这意味着:查询并返回时间序列前缀 Path.path 的最后一个数据点。

结果将以三列表格式返回。

  1. | Time | Path | Value |

示例 1:获取 root.ln.wf01.wt01.speed 的最后一点:

  1. > select lastspeedfromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ----------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |

示例 2:获取 root.ln.wf01.wt01 的最后一个速度、状态和温度点

  1. > select lastspeed,status,temperaturefromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ---------------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |
  5. | 7 | root.ln.wf01.wt01.status | true |
  6. | 9 | root.ln.wf01.wt01.temperature| 35.7 |

自动灌装

在IoTDB的实际使用中,在进行时间序列的查询操作时,可能会出现某些时间点值为null的情况,这会阻碍用户的进一步分析。为了更好地反映数据更改的程度,用户希望自动填充缺失值。因此,IoTDB系统引入了自动填充功能。

自动填充功能是指在对单列或多列进行时间序列查询时,根据用户指定的方法和有效时间范围填充空值。如果查询点的值不为 null,则填充函数将不起作用。

注意:在当前版本中,IoTDB为用户提供了两种方法:先前和线性。上一种方法用以前的值填充空白。线性方法通过线性拟合填充空白。并且 fill 函数只能在执行时间点查询时使用。

填充功能

  • 上一个函数

当查询时间戳的值为 null 时,使用上一个时间戳的值来填充空白。形式化的先前方法如下(有关详细语法,请参见第 7.1.3.6 节):

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[previous, <before_range>], …)

所有参数的详细说明见表3-4。

**表3-4 以前的填充参数列表**

参数名称(不区分大小写) 解释
路径,前缀路径 查询路径;必填项
T 查询时间戳(只能指定一个);必填项
data_type 填充方法使用的数据类型。可选值为 int32、int64、浮点型、双精度型、布尔值、文本;可选字段
before_range 表示上一种方法的有效时间范围。当存在 [T-before_range, T] 范围内的值时,前一种方法有效。如果未指定before_range,before_range采用默认值default_fill_interval;-1 表示无穷大;可选字段

在这里,我们给出了使用前面的方法填充空值的示例。SQL 语句如下:

  1. select temperature from root.sgcc.wf03.wt01 wheretime= 2017-11-01T16:37:50.000 fill(float[previous, 1m])

这意味着:

由于时间序列 root.sgcc.wf03.wt01.temperature在 2017-11-01T16:37:50.000 为空,因此系统使用之前的时间戳 2017-11-01T16:37:00.000(时间戳在 [2017-11-01T16:36:50.000, 2017-11-01T16:37:50.000] 时间范围内)进行填充和显示。

,此语句的执行结果如下所示:

值得注意的是,如果在指定的有效时间范围内没有值,系统将不会填充null值,如下所示:

  • 线性法

当查询时间戳的值为 null 时,使用上一个和下一个时间戳的值来填充空白。形式化的线性方法如下:

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[linear, <before_range>, <after_range>]…)
相关文章
|
3月前
|
监控 Java 持续交付
后端开发中的微服务架构实践与挑战####
在当今快速迭代的软件开发领域,微服务架构以其灵活性和可扩展性成为众多企业的首选。本文探讨了微服务架构的核心概念、实施策略及面临的主要挑战,旨在为后端开发者提供一个全面的指南。通过分析真实案例,揭示微服务在提升系统敏捷性的同时,如何有效应对分布式系统的复杂性问题。 ####
|
3月前
|
消息中间件 API 持续交付
后端开发中的微服务架构实践####
【10月更文挑战第21天】 本文深入探讨了微服务架构在后端开发中的应用,从基本概念出发,详细阐述了微服务的核心优势、设计原则及关键技术。通过实际案例分析,揭示了微服务如何助力企业应对复杂业务需求,提升系统的可扩展性、灵活性与可靠性。同时,也指出了实施微服务过程中可能面临的挑战,并提供了相应的解决方案和最佳实践。 ####
52 3
|
1月前
|
监控 JavaScript 数据可视化
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
|
3月前
|
消息中间件 监控 持续交付
后端开发中的微服务架构设计与实践####
在当今快速发展的软件开发领域,微服务架构已成为构建高效、可扩展和易于维护应用的关键策略。本文将深入探讨微服务架构的核心概念、设计原则与实战技巧,通过实例解析如何在后端开发中有效实施微服务,以应对复杂业务需求和技术挑战。我们将从微服务的拆分策略、通信机制、数据管理到持续集成/持续部署(CI/CD)流程,全面剖析其背后的技术细节与最佳实践,为读者提供一份详尽的微服务架构设计与实践指南。 ####
137 31
|
2月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
173 3
|
2月前
|
前端开发 搜索推荐 安全
陪玩系统架构设计陪玩系统前后端开发,陪玩前端设计是如何让人眼前一亮的?
陪玩系统的架构设计、前后端开发及前端设计是构建吸引用户、功能完善的平台关键。架构需考虑用户需求、技术选型、安全性等,确保稳定性和扩展性。前端可选用React、Vue或Uniapp,后端用Spring Boot或Django,数据库结合MySQL和MongoDB。功能涵盖用户管理、陪玩者管理、订单处理、智能匹配与通讯。安全性方面采用SSL加密和定期漏洞扫描。前端设计注重美观、易用及个性化推荐,提升用户体验和平台粘性。
89 0
|
2月前
|
运维 监控 Java
后端开发中的微服务架构实践与挑战####
在数字化转型加速的今天,微服务架构凭借其高度的灵活性、可扩展性和可维护性,成为众多企业后端系统构建的首选方案。本文深入探讨了微服务架构的核心概念、实施步骤、关键技术考量以及面临的主要挑战,旨在为开发者提供一份实用的实践指南。通过案例分析,揭示微服务在实际项目中的应用效果,并针对常见问题提出解决策略,帮助读者更好地理解和应对微服务架构带来的复杂性与机遇。 ####
|
3月前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
|
2月前
|
消息中间件 运维 安全
后端开发中的微服务架构实践与挑战####
在数字化转型的浪潮中,微服务架构凭借其高度的灵活性和可扩展性,成为众多企业重构后端系统的首选方案。本文将深入探讨微服务的核心概念、设计原则、关键技术选型及在实际项目实施过程中面临的挑战与解决方案,旨在为开发者提供一套实用的微服务架构落地指南。我们将从理论框架出发,逐步深入至技术细节,最终通过案例分析,揭示如何在复杂业务场景下有效应用微服务,提升系统的整体性能与稳定性。 ####
59 1
|
2月前
|
消息中间件 运维 API
后端开发中的微服务架构实践####
本文深入探讨了微服务架构在后端开发中的应用,从其定义、优势到实际案例分析,全面解析了如何有效实施微服务以提升系统的可维护性、扩展性和灵活性。不同于传统摘要的概述性质,本摘要旨在激发读者对微服务架构深度探索的兴趣,通过提出问题而非直接给出答案的方式,引导读者深入
57 1

推荐镜像

更多