卷积神经网络(Convolutional Neural Network

简介: 机器学习是一种人工智能技术,通过让计算机从数据中学习和提取规律,从而实现对未知数据的预测和决策。卷积神经网络(Convolutional Neural Network,简称 CNN)是机器学习中的一种方法,主要应用于图像识别、语音识别、文本处理等领域。

机器学习是一种人工智能技术,通过让计算机从数据中学习和提取规律,从而实现对未知数据的预测和决策。卷积神经网络(Convolutional Neural Network,简称 CNN)是机器学习中的一种方法,主要应用于图像识别、语音识别、文本处理等领域。
CNN 的特点是能够从复杂数据中提取特征,例如识别音频信号或图像信号中的复杂模式。相对于传统的多层感知器(Multilayer Perceptron,简称 MLP),CNN 更加适用于处理图像等高维度数据,因为它可以减少参数数量,降低过拟合风险。
使用卷积神经网络进行机器学习的过程主要包括以下几个步骤:

  1. 数据预处理:将原始数据(如图像)转化为适合神经网络处理的格式,例如将像素值归一化到 [0, 1] 区间。
  2. 构建模型:设计 CNN 的结构,包括卷积层、池化层、全连接层等。卷积层用于提取特征,池化层用于降低计算复杂度,全连接层用于分类或回归。
  3. 训练模型:通过反向传播算法优化模型参数,使得模型能够更好地拟合训练数据。训练过程可能涉及到大量的迭代和调整,以达到最优解。
  4. 评估模型:使用测试数据集评估模型的性能,如准确率、召回率等指标。
  5. 应用模型:将训练好的模型用于实际问题,例如图像分类、目标检测等。
    总之,卷积神经网络是一种强大的机器学习工具,可以从复杂数据中提取特征并进行分析。通过设计合适的模型结构,并进行充分的训练和优化,CNN 可以实现对图像等高维度数据的有效处理。
Denoising autoencoder
A denoising autoencoder is pretty much the same architecture as a normal autoencoder. The input is noised up, and cost function tries to denoise it by minimizing the construction error from denoised input to clean output.

import tensorflow as tf
import numpy as np
import time

def get_batch(X, Xn, size):
    a = np.random.choice(len(X), size, replace=False)
    return X[a], Xn[a]

class Denoiser:

    def __init__(self, input_dim, hidden_dim, epoch=10000, batch_size=50, learning_rate=0.001):
        self.epoch = epoch
        self.batch_size = batch_size
        self.learning_rate = learning_rate

        self.x = tf.placeholder(dtype=tf.float32, shape=[None, input_dim], name='x')
        self.x_noised = tf.placeholder(dtype=tf.float32, shape=[None, input_dim], name='x_noised')
        with tf.name_scope('encode'):
            self.weights1 = tf.Variable(tf.random_normal([input_dim, hidden_dim], dtype=tf.float32), name='weights')
            self.biases1 = tf.Variable(tf.zeros([hidden_dim]), name='biases')
            self.encoded = tf.nn.sigmoid(tf.matmul(self.x_noised, self.weights1) + self.biases1, name='encoded')
        with tf.name_scope('decode'):
            weights = tf.Variable(tf.random_normal([hidden_dim, input_dim], dtype=tf.float32), name='weights')
            biases = tf.Variable(tf.zeros([input_dim]), name='biases')
            self.decoded = tf.matmul(self.encoded, weights) + biases
        self.loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(self.x, self.decoded))))
        self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
        self.saver = tf.train.Saver()

    def add_noise(self, data):
        noise_type = 'mask-0.2'
        if noise_type == 'gaussian':
            n = np.random.normal(0, 0.1, np.shape(data))
            return data + n
        if 'mask' in noise_type:
            frac = float(noise_type.split('-')[1])
            temp = np.copy(data)
            for i in temp:
                n = np.random.choice(len(i), round(frac * len(i)), replace=False)
                i[n] = 0
            return temp

    def train(self, data):
        data_noised = self.add_noise(data)
        with open('log.csv', 'w') as writer:
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                for i in range(self.epoch):
                    for j in range(50):
                        batch_data, batch_data_noised = get_batch(data, data_noised, self.batch_size)
                        l, _ = sess.run([self.loss, self.train_op], feed_dict={self.x: batch_data, self.x_noised: batch_data_noised})
                    if i % 10 == 0:
                        print('epoch {0}: loss = {1}'.format(i, l))
                        self.saver.save(sess, './model.ckpt')
                        epoch_time = int(time.time())
                        row_str = str(epoch_time) + ',' + str(i) + ',' + str(l) + '\n'
                        writer.write(row_str)
                        writer.flush()
                self.saver.save(sess, './model.ckpt')

    def test(self, data):
        with tf.Session() as sess:
            self.saver.restore(sess, './model.ckpt')
            hidden, reconstructed = sess.run([self.encoded, self.decoded], feed_dict={self.x: data})
        print('input', data)
        print('compressed', hidden)
        print('reconstructed', reconstructed)
        return reconstructed

    def get_params(self):
        with tf.Session() as sess:
            self.saver.restore(sess, './model.ckpt')
            weights, biases = sess.run([self.weights1, self.biases1])
        return weights, biases
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
39 11
|
9天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
32 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
9天前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
30 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
9天前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
28 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
11天前
|
机器学习/深度学习
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
42 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
|
13天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
41 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
2月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。

热门文章

最新文章