机器学习是一种人工智能技术,通过让计算机从数据中学习和提取规律,从而实现对未知数据的预测和决策。卷积神经网络(Convolutional Neural Network,简称 CNN)是机器学习中的一种方法,主要应用于图像识别、语音识别、文本处理等领域。
CNN 的特点是能够从复杂数据中提取特征,例如识别音频信号或图像信号中的复杂模式。相对于传统的多层感知器(Multilayer Perceptron,简称 MLP),CNN 更加适用于处理图像等高维度数据,因为它可以减少参数数量,降低过拟合风险。
使用卷积神经网络进行机器学习的过程主要包括以下几个步骤:
- 数据预处理:将原始数据(如图像)转化为适合神经网络处理的格式,例如将像素值归一化到 [0, 1] 区间。
- 构建模型:设计 CNN 的结构,包括卷积层、池化层、全连接层等。卷积层用于提取特征,池化层用于降低计算复杂度,全连接层用于分类或回归。
- 训练模型:通过反向传播算法优化模型参数,使得模型能够更好地拟合训练数据。训练过程可能涉及到大量的迭代和调整,以达到最优解。
- 评估模型:使用测试数据集评估模型的性能,如准确率、召回率等指标。
- 应用模型:将训练好的模型用于实际问题,例如图像分类、目标检测等。
总之,卷积神经网络是一种强大的机器学习工具,可以从复杂数据中提取特征并进行分析。通过设计合适的模型结构,并进行充分的训练和优化,CNN 可以实现对图像等高维度数据的有效处理。
Denoising autoencoder
A denoising autoencoder is pretty much the same architecture as a normal autoencoder. The input is noised up, and cost function tries to denoise it by minimizing the construction error from denoised input to clean output.
import tensorflow as tf
import numpy as np
import time
def get_batch(X, Xn, size):
a = np.random.choice(len(X), size, replace=False)
return X[a], Xn[a]
class Denoiser:
def __init__(self, input_dim, hidden_dim, epoch=10000, batch_size=50, learning_rate=0.001):
self.epoch = epoch
self.batch_size = batch_size
self.learning_rate = learning_rate
self.x = tf.placeholder(dtype=tf.float32, shape=[None, input_dim], name='x')
self.x_noised = tf.placeholder(dtype=tf.float32, shape=[None, input_dim], name='x_noised')
with tf.name_scope('encode'):
self.weights1 = tf.Variable(tf.random_normal([input_dim, hidden_dim], dtype=tf.float32), name='weights')
self.biases1 = tf.Variable(tf.zeros([hidden_dim]), name='biases')
self.encoded = tf.nn.sigmoid(tf.matmul(self.x_noised, self.weights1) + self.biases1, name='encoded')
with tf.name_scope('decode'):
weights = tf.Variable(tf.random_normal([hidden_dim, input_dim], dtype=tf.float32), name='weights')
biases = tf.Variable(tf.zeros([input_dim]), name='biases')
self.decoded = tf.matmul(self.encoded, weights) + biases
self.loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(self.x, self.decoded))))
self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
self.saver = tf.train.Saver()
def add_noise(self, data):
noise_type = 'mask-0.2'
if noise_type == 'gaussian':
n = np.random.normal(0, 0.1, np.shape(data))
return data + n
if 'mask' in noise_type:
frac = float(noise_type.split('-')[1])
temp = np.copy(data)
for i in temp:
n = np.random.choice(len(i), round(frac * len(i)), replace=False)
i[n] = 0
return temp
def train(self, data):
data_noised = self.add_noise(data)
with open('log.csv', 'w') as writer:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(self.epoch):
for j in range(50):
batch_data, batch_data_noised = get_batch(data, data_noised, self.batch_size)
l, _ = sess.run([self.loss, self.train_op], feed_dict={self.x: batch_data, self.x_noised: batch_data_noised})
if i % 10 == 0:
print('epoch {0}: loss = {1}'.format(i, l))
self.saver.save(sess, './model.ckpt')
epoch_time = int(time.time())
row_str = str(epoch_time) + ',' + str(i) + ',' + str(l) + '\n'
writer.write(row_str)
writer.flush()
self.saver.save(sess, './model.ckpt')
def test(self, data):
with tf.Session() as sess:
self.saver.restore(sess, './model.ckpt')
hidden, reconstructed = sess.run([self.encoded, self.decoded], feed_dict={self.x: data})
print('input', data)
print('compressed', hidden)
print('reconstructed', reconstructed)
return reconstructed
def get_params(self):
with tf.Session() as sess:
self.saver.restore(sess, './model.ckpt')
weights, biases = sess.run([self.weights1, self.biases1])
return weights, biases