RabbitMQ、Kafka和RocketMQ比较

简介: RabbitMQ、Kafka和RocketMQ比较

一、概述

消息队列中间件(MQ)是不同系统之间消息传递,异步通信的常见组件,RabbitMQ、Kafka和RocketMQ是目前业界常见的3种消息中间件,本文重点阐述了他们特性差异、架构设计和处理常见问题的方案。

二、特性比较

RabbitMQ适合于中小规模的使用场景,是目前业界使用最广泛的一种MQ,其完全实现了AMQP的协议,实现了非常丰富的消息可靠性的保障机制,和其他MQ相比,其在可靠性方面是最强的,但也正是由于可靠性方面实现机制过于沉重,导致其吞吐量并不高,在生产环境经常会出现消息积压的问题。

Kafka适合于实时流处理的使用场景,在大数据处理领域经常见到,可以用来处理海量的日志数据和IoT海量数据采集,由于其基于文件顺序读写的存储架构和基于zero-copy的IO处理策略,使得他的吞吐量非常之高,性能非常之好,能够达到百万级别的数据处理吞吐量,其可靠性保障主要是基于多副本这种策略,所以可靠性方面明显不如RabbitMQ。

RabbitMQ Kafka RocketMQ
使用场景 中小规模的使用场景 实时流处理、海量日志数据处理 性能均衡,优势在分布式事务场景
可靠性 高,AMPQ协议保障 低,基于多副本机制保障 中等,基于事务的保障
吞吐量 低,万级别 高,基于顺序读写的存储架构,百万级别 中等,十万级别
时效性 毫秒级别 毫秒级别 毫秒级别
优点 可靠性非常高 吞吐量非常大,性能非常好,集群高可用 性能和功能全面,擅长分布式事务方向
缺点 吞吐量比较低,消息积累会影响性能,基于erlang开发不好定制 数据可靠性保障较低,会存在数据丢失 客户端只支持Java,官方文档支持较少

三、常见问题处理策略

1.可靠性保障

  • RabbitMQ
  1. 持久化机制。RabbitMQ通过消息持久化机制来确保消息的可靠传递。生产者可以选择将消息标记为持久化,使得即使在消息队列服务器故障后,消息也能被保存并传递给消费者。
  2. RabbitMQ生产者提供的可靠性机制包括发布确认(Publish Confirm)、事务机制(Transaction),生产者可以通过发布确认和事务机制获取消息是否成功被RabbitMQ接收和处理的确认;RabbitMQ生产者提供的可靠性保障机制包括消息确认机制(ACK),消费者可以通过消息确认机制来保障消息的可靠消费。
void basicAck(long deliveryTag, boolean multiple)//确认消息
void basicNack(long deliveryTag, boolean multiple, boolean requeue)//拒绝消息
void basicRecover(boolean requeue)//重发消息
  • Kafka
  1. 持久化。kafka的消息在发送前会被持久化存储到磁盘上,即使在服务器重启后也不会丢失。但也需要对kafka的持久化消息设置失效时间,保障存储空间的充足。
  2. 多副本。Kafka采用多副本机制,将消息复制到多个Broker节点上,即使其中一个Broker节点故障,仍然可以从其他副本节点读取和传递消息。
  • RocketMQ

    和kafka类似。

总结:RabbitMQ相比Kafka和RocketMQ,他有跟丰富的可靠性保障机制,包括保障生产者消息的可靠发送、数据的持久化还有消费者的可靠消费。

2.流控措施

流控措施主要是为了解决消息积压的问题,如果生产者生成消息速率过快,而消费者消费消息的速率过慢,则会在MQ中形成消息挤压,如果不及时处理就会造成MQ服务不可用或者OOM等问题。

  • RabbitMQ
  1. 调整消费者消息消费速率。主要是用来控制消费任务的条数。可以使用QoS(Quality of Service)机制设置每个消费者的预取计数,限制每次从队列中获取的消息数量,以控制消费者的处理速度。
  2. 调整消费者消息消费流量。主要是用来控制消费消息的大小。通过设置basic.qos或basic.consume命令的参数来控制消费者的处理速度,避免消息过多导致积压。
/**
* prefetchSize:服务器传送最大内容量(以八位字节计算),如果没有限制,则为0
* prefetchCount:服务器每次传递的最大消息数,如果没有限制,则为0;
* global:如果为true,则当前设置将会应用于整个Channel(频道)
**/
void basicQos(int prefetchSize, int prefetchCount, boolean global)
  • Kafka
  1. 调整分区数和副本数。kafka下游消费者的数量和其分区数是一致的,所以Kafka通过分区和副本机制来实现消息的并行处理和负载均衡。可以根据消息的负载情况和消费者的处理能力,通过增加分区数量、调整副本分配策略等方式来提高系统的处理能力。
  2. 调整消息失效策略。kafka提供了消息的保存策略和清理策略,可以根据时间和数据的使用情况来设置。
  • RocketMQ
  1. 动态调整消费者数量。RabbitMQ可以根据系统的负载情况和消息队列的堆积情况,动态调整消费者的并发消费线程数,以适应消息的处理需求。
  2. 调整数据的拉取或推送的模式。RocketMQ还提供了消息拉取和推拉模式,消费者可以根据自身的处理能力主动拉取消息,避免消息积压过多。

总结:流控措施的几种方式主要包括:(1)扩大下游消费者的消费速率和流量;(2)增大消费者的数量,扩大消费能力;(3)调整MQ的副本或分区数,发挥下游消费者的最大消费能力;(4)拉取或推送模式的权衡。

3.重复消费问题

重复性消费问题主要需要解决是幂等性问题,对于重复下发的消息也能保障唯一性消费。

  • RabbitMQ
  1. 幂等性处理。在消费者端实现幂等性逻辑,即无论消息被消费多少次,最终的结果应该保持一致。这可以通过在消费端进行唯一标识的检查或者记录已经处理过的消息来实现。没下消费任务时都去查询该任务是否已被消费,这种是重复下发后处理的方式。
  2. 消息确认机制。消费者在处理完消息后,发送确认消息(ACK)给RabbitMQ,告知消息已经成功处理。RabbitMQ根据接收到的确认消息来判断是否需要重新投递消息给其他消费者,这种是主动通知消息下发的方式。
  • Kafka
  1. 消息确认机制。消费者在处理完消息后,提交已消费的偏移量(Offset)给Kafka,Kafka会记录已提交的偏移量,以便在消费者重新启动时从正确的位置继续消费。消费者可以定期提交偏移量,确保消息只被消费一次。
  • RocketMQ
  1. 使用消息唯一标识符(Message ID)。在消息发送时,为每条消息附加一个唯一标识符。消费者在处理消息时,可以通过判断消息唯一标识符来避免重复消费。可以将消息ID记录在数据库或缓存中,用于去重检查。

总结:在MQ中处理重复消费的问题主要的思路有:(1)通过给消息加唯一性标识来过滤已经消费的消息,对于像RocketMQ这种存在Messeage ID的,处理起来就比较简单,就只需要对Messeage ID去重即可,对于像RabbitMQ和kafka这种可以将消息状态保存在数据库或缓存中进行唯一性去重;(2)消息确认机制,就是对于消息的消费会主动上报的,每次消费完就会进行确认,在RabbitMQ中是会恢复ACK标识,在kafka中是会恢复offset标识。

4.消息顺序性

  • RabbitMQ
  1. 单个队列。rabbitmq 保证了同一个队列中的消息按照发布的顺序进入和出队。
  • Kafka
  1. 有序分区。kafka 保证了同一个分区(topic + partition)中的消息按照发布的顺序存储和消费。
  • RocketMQ
  1. 有序分区。rokcetmq 保证了同一个队列(topic + queueId)中的消息按照发布的顺序存储和消费。

参考资料

  1. MQ黄金三剑客:RabbitMQ、RocketMQ和Kafka深入解密常见问题及功能对比指南?:https://juejin.cn/post/7254267283249840184?utm_source=gold_browser_extension
  2. 【RabbitMQ.Client笔记】Qos与消息应答:https://www.cnblogs.com/fanfan-90/p/13589626.html (说明了通过Qos做限流,通过手动ACK来进行消息确认)
  3. 《RabbitMQ系列》之RabbitMQ的优先级队列:https://zhuanlan.zhihu.com/p/582787804(实现了优先级队列)
目录
相关文章
|
4月前
|
消息中间件 安全 物联网
海量接入、毫秒响应:易易互联基于 Apache RocketMQ + MQTT 构筑高可用物联网消息中枢
易易互联科技有限公司是吉利集团旗下专注于换电生态的全资子公司,致力于打造安全、便捷、便宜的智能换电网络。公司依托吉利GBRC换电平台,基于电池共享与车辆全生命周期运营,已布局超470座换电站,覆盖40多个城市,计划2027年达2000座。面对海量设备高并发连接、高实时性要求及数据洪峰挑战,易易互联采用阿里云MQTT与RocketMQ构建高效物联网通信架构,实现稳定接入、低延迟通信与弹性处理,全面支撑其全国换电网络规模化运营与智能化升级。
339 1
海量接入、毫秒响应:易易互联基于 Apache RocketMQ + MQTT 构筑高可用物联网消息中枢
|
4月前
|
消息中间件 Java Kafka
消息队列比较:Spring 微服务中的 Kafka 与 RabbitMQ
本文深入解析了 Kafka 和 RabbitMQ 两大主流消息队列在 Spring 微服务中的应用与对比。内容涵盖消息队列的基本原理、Kafka 与 RabbitMQ 的核心概念、各自优势及典型用例,并结合 Spring 生态的集成方式,帮助开发者根据实际需求选择合适的消息中间件,提升系统解耦、可扩展性与可靠性。
341 1
消息队列比较:Spring 微服务中的 Kafka 与 RabbitMQ
|
8月前
|
消息中间件 架构师 Java
美团面试:对比分析 RocketMQ、Kafka、RabbitMQ 三大MQ常见问题?
美团面试:对比分析 RocketMQ、Kafka、RabbitMQ 三大MQ常见问题?
美团面试:对比分析 RocketMQ、Kafka、RabbitMQ 三大MQ常见问题?
|
消息中间件 负载均衡 物联网
乐刻运动:基于 RocketMQ + MQTT 实现健身产业数字化升级
乐刻运动通过采用阿里云的云消息队列 RocketMQ 版和云消息队列 MQTT 版,不仅提升了系统的实时数据处理能力,还增强了系统的可扩展性、可靠性和性能,为业务的持续发展和流畅的用户体验,提供了坚实的技术支持,进一步推动了数字经济与健身产业的深度融合。
492 87
|
10月前
|
消息中间件 存储 Cloud Native
基于 RocketMQ 的云原生 MQTT 消息引擎设计
基于 RocketMQ 的云原生 MQTT 消息引擎设计
511 1
|
消息中间件 运维 Java
招行面试:RocketMQ、Kafka、RabbitMQ,如何选型?
45岁资深架构师尼恩针对一线互联网企业面试题,特别是招商银行的高阶Java后端面试题,进行了系统化梳理。本文重点讲解如何根据应用场景选择合适的消息中间件(如RabbitMQ、RocketMQ和Kafka),并对比三者的性能、功能、可靠性和运维复杂度,帮助求职者在面试中充分展示技术实力,实现“offer直提”。此外,尼恩还提供了《尼恩Java面试宝典PDF》等资源,助力求职者提升架构、设计、开发水平,应对高并发、分布式系统的挑战。更多内容及技术圣经系列PDF,请关注【技术自由圈】获取。
|
12月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
510 1
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
399 1
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
1406 9

热门文章

最新文章