浅谈踩坑记之一个Java线程池参数,差点引起线上事故(上)

简介: 浅谈踩坑记之一个Java线程池参数,差点引起线上事故

一、 前言

最近对重构Dubbo服务线程池调优,工作线程使用 CachedThreadPool 线程策略,可是上线之后,出现线程池一路上升,差点导致线上事故。

所以本篇文章对线程池揭开谜底。

二、Dubbo线程池介绍

Dubbo中 CachedThreadPool源代码

package org.apache.dubbo.common.threadpool.support.cached;
import org.apache.dubbo.common.URL;
import org.apache.dubbo.common.threadlocal.NamedInternalThreadFactory;
import org.apache.dubbo.common.threadpool.ThreadPool;
import org.apache.dubbo.common.threadpool.support.AbortPolicyWithReport;
import java.util.concurrent.Executor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import static org.apache.dubbo.common.constants.CommonConstants.ALIVE_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.CORE_THREADS_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_ALIVE;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_CORE_THREADS;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_QUEUES;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_THREAD_NAME;
import static org.apache.dubbo.common.constants.CommonConstants.QUEUES_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.THREADS_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.THREAD_NAME_KEY;
/**
 * This thread pool is self-tuned. Thread will be recycled after idle for one minute, and new thread will be created for
 * the upcoming request.
 *
 * @see java.util.concurrent.Executors#newCachedThreadPool()
 */
public class CachedThreadPool implements ThreadPool {
    @Override
    public Executor getExecutor(URL url) {
        //1 获取线程名称前缀 如果没有 默认是Dubbo
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        //2. 获取线程池核心线程数大小
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        //3. 获取线程池最大线程数大小,默认整型最大值
        int threads = url.getParameter(THREADS_KEY, Integer.MAX_VALUE);
        //4. 获取线程池队列大小
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        //5. 获取线程池多长时间被回收 单位毫秒
        int alive = url.getParameter(ALIVE_KEY, DEFAULT_ALIVE);
        //6. 使用JUC包里的ThreadPoolExecutor创建线程池
        return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }
}

可以看出,Dubbo本质上是使用JUC包里的ThreadPoolExecutor创建线程池,源码如下

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

大致流程图如下:


1、 当线程池小于corePoolSize时,新任务将创建一个新的线程,即使此时线程池中存在空闲线程。

2、 当线程池达到corePoolSize时,新提交的任务将被放入workQueue中,等待线程池任务调度执行。

3、 当workQueue已满,且maximumPoolSize>corePoolSize时,新任务会创建新线程执行任务。

4、 当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理。

5、 当线程池中超过corePoolSize时,空闲时间达到keepAliveTime时,关闭空闲线程。

另外,当设置了allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭。


RejectedExecutionHandler 默认提供了四种拒绝策略

1、AbortPolicy策略:该策略会直接抛出异常,阻止系统正常工作;

2、CallerRunsPolicy策略:如果线程池的线程数量达到上限,该策略会把任务队列中的任务放在调用者线程当中运行;

3、DiscardOledestPolicy策略:该策略会丢弃任务队列中最老的一个任务,也就是当前任务队列中最先被添加进去的,马上要被执行的那个任务,并尝试再次提交。

4、DiscardPolicy策略:该策略会默默丢弃无法处理的任务,不予任何处理。当然使用此策略,业务场景中需允许任务的丢失;

值得注意的是,Dubbo中拒绝策略 AbortPolicyWithReport 实际上是继承了 ThreadPoolExecutor.AbortPolicy 策略,主要是多打印了一些关键信息和堆栈信息。

相关文章
|
12天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
24天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
102 38
|
24天前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
63 4
|
24天前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
96 2
|
27天前
|
缓存 监控 Java
java中线程池的使用
java中线程池的使用
|
6天前
|
Java
在Java中定义一个不做事且没有参数的构造方法的作用
Java程序在执行子类的构造方法之前,如果没有用super()来调用父类特定的构造方法,则会调用父类中“没有参数的构造方法”。因此,如果父类中只定义了有参数的构造方法,而在子类的构造方法中又没有用super()来调用父类中特定的构造方法,则编译时将发生错误,因为Java程序在父类中找不到没有参数的构造方法可供执行。解决办法是在父类里加上一个不做事且没有参数的构造方法。
|
1月前
|
存储 算法 Java
java制作海报六:Graphics2D的RenderingHints方法参数详解,包括解决文字不清晰,抗锯齿问题
这篇文章是关于如何在Java中使用Graphics2D的RenderingHints方法来提高海报制作的图像质量和文字清晰度,包括抗锯齿和解决文字不清晰问题的技术详解。
47 0
java制作海报六:Graphics2D的RenderingHints方法参数详解,包括解决文字不清晰,抗锯齿问题
|
1月前
|
Java
java构造方法时对象初始化,实例化,参数赋值
java构造方法时对象初始化,实例化,参数赋值
51 1
|
1月前
|
设计模式 Java 物联网
【多线程-从零开始-玖】内核态,用户态,线程池的参数、使用方法详解
【多线程-从零开始-玖】内核态,用户态,线程池的参数、使用方法详解
58 0
|
2月前
|
Java 数据中心 微服务
Java高级知识:线程池隔离与信号量隔离的实战应用
在Java并发编程中,线程池隔离与信号量隔离是两种常用的资源隔离技术,它们在提高系统稳定性、防止系统过载方面发挥着重要作用。
45 0
下一篇
无影云桌面