JMeter与Python的多重交响:从入门到高级应用(上)

简介: 在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。**”**Jython-----

在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。

Jython

Jython是Python语言的Java实现,它允许您在JMeter中使用Python脚本,不需要额外的JAR包。

一、下载并配置

  1. 官网下载地址:Downloads | Jython

image.png

  1. 网盘链接:downloads > Jython 提取码:ux02

  2. 将下载的jar包放到Jmeter的安装路径/lib,如: D:\application\apache-jmeter-5.1.1\lib

image.png

  1. 切记,重启 jmeter

二、使用技巧

新增一个JSR223,选择语言为“jython”;
图片

注意:由于这个包使用的python版本为 2.7,所以写代码的时候不能全搬python3的语法过来玩。

示例一:前后置脚本中写python代码。

# jsr223 前置代码中编写:
"""该脚本用于加密登录信息"""
import hashlib
import sys
import time
import json

def password_srt(pubkey,  password):
    time_str = str(time.time())
    sign_str = str(pubkey) + time_str + str(password)
    sign = hashlib.md5(sign_str.encode('utf-8')).hexdigest()
    res = {'sign': sign, 'pubkey': pubkey, 'password': password}
    res = json.dumps(res)
    return res

result = password_srt(1234,5678)
log.info(result)
vars.put("secrity",result) # 设置到变量,为后续取样器使用。

贴图:

image.png

示例二:后置脚本中写python代码

# jsr223 后置脚本代码
import json
result = prev.getResponseDataAsString(); # 固定写法,获取响应结果
log.info("------"+result)   # 这里使用print 会打印不到日志里面来显示。
json_data = json.loads(result)  # 转python识别的字典对象
token = json_data.get("token") # 获取token值
log.info(token)
vars.put("token",token)

贴图:

image.png

添加一个debug sample来检查结果:
image.png

最终执行结果:
image.png

一些小Tips!!:

  • 性能流泪: 使用 Python 脚本会引入性能问题,因为 Python 是一种解释型语言,相比于 JMeter 自带的 Java 脚本,Python 脚本的执行效率可能会稍低,勇哥踩过这个坑!!!

  • 维护想哭: 逻辑分散在 JMeter 的测试计划和 Python 脚本之间时,会导致维护困难;也不利于团队协作!

  • 依赖一坨翔: Python是2.7版本且难以支持第三方python库使用,要写复杂的代码也是很头疼的!

  • 调试难上天: JMeter 中调试 Python 脚本真是看花眼,因为你看的信息都是jmeter输出的,定位问题一言难尽!

总结

以上就是勇哥今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我:公众号\博客\CSDN\B站:测试玩家勇哥;我会不定期地分享更多的精彩内容。感谢你的阅读和支持!


题外话,勇哥打算把新建的技术交流群,打造成一个活跃的高质量技术群。工作中遇到的技术问题,都可以在里面咨询大家,还有工作内推的机会。有兴趣的小伙伴,欢迎加我(记得备注是进群还是报名学习)👇👇👇**


勇哥,10年落魄测试老司机,技术栈偏python,目前在一家超大型房产公司担任自动化测试主管,日常工作比较繁杂,主要负责自动化测试,性能测试、软件质量管理及人员管理。工作之余专注于为粉丝进行简历修改、面试辅导、模拟面试、资料分享、一对一自动化测试教学辅导等副业发展。目前已服务十多位小伙伴,取得高薪offer。

关注公众号,测试干货及时送达

往期精选文章👇:
接口自动化测试项目2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等
揭秘抓包利器:Python和Mitmproxy让您轻松实现接口请求抓取与分析!
构建高效的接口自动化测试框架思路
Pytest 快速入门
接口自动化之测试数据动态生成并替换
requests模块该如何封装?
接口自动化如何封装mysql操作
一文看懂python如何执行cmd命令
最通俗易懂python操作数据库
python-Threading多线程之线程锁
python正则一篇搞掂
性能测试之必备知识

性能分析思

Python + ChatGPT来实现一个智能对话的钉钉机器人
一文看懂python如何执行cmd命令
相关文章
|
14天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
4天前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
28 7
|
14天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
46 11
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
11天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
14天前
|
数据库 Python
Python 应用
Python 应用。
37 4
|
11天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
17天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
63 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
14 8
|
3天前
|
机器人 计算机视觉 Python
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
16 5
下一篇
无影云桌面