JMeter与Python的多重交响:从入门到高级应用(下)

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。。

在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。。

一、OS Process Sampler

在OS Process Sampler中,可以直接执行系统命令,这也包括执行Python脚本以及其他乱七八糟的脚本或者文件,但是我们这里只介绍关于调用python脚本的知识。

梳理步骤:
  1. 先编写python脚本,可以接收参数也可以不接收参数,但是一定要使用 print 打印结果出来

  2. 如果是windows系统,编写一个.bat 文件,让jmeter直接执行文件,如果linux文件,则编写shell文件

  3. 启动jmeter,添加一个os process sample ,然后配置里面的信息

  4. 添加一个正则提取器,提取调用外部文件返回的结果就完成我们的所有操作了。

演练开始

下面开始步骤一的操作
如下:加密文件中的python代码:

import base64
import sys
from Crypto.Cipher import AES
import binascii

def add_to_16(text):
    while len(text) % 16 != 0:
        text += '\0'
    return text

def encrypt(data, password):
    if isinstance(password, str):
        password = password.encode('utf8')
    bs = AES.block_size
    pad = lambda s: s + (bs - len(s) % bs) * chr(bs - len(s) % bs)
    cipher = AES.new(password, AES.MODE_ECB)
    data = cipher.encrypt(pad(data).encode('utf8'))
    encrypt_data = binascii.b2a_hex(data)  # 输出hex
    # encrypt_data = base64.b64encode(data)         # 取消注释,输出Base64格式
    return encrypt_data.decode('utf8')

if __name__ == '__main__':
    data = sys.argv[1]  # 待加密数据
    # data = '1915'  # 待加密数据
    password = '5544223414143242332423423423423'  # 16,24,32位长的密码(密钥)
    password = add_to_16(password)
    encrypt_data = encrypt(data, password)
    # print('加密前数据:{}\n======================='.format(data))
    print(f"sign={encrypt_data}")

    # decrypt_data = decrypt(encrypt_data, password)
    # print('解密后的数据:{}'.format(decrypt_data))

上述代码的大概逻辑就是接收传进来的待加密字符串,然后进行AES加密,最后打印加密后的数据结果

接着我们开始步骤二的操作
用windows举例,.bat 文件内容如下:

c:
cd C:\Users\chenyongzhi11\Desktop\
python .\do_AES.py %1

上面文件内容就是在命令行执行python文件,由于前面的python文件接收参数,我们这里使用 %1 这个占位来接收jmeter传进去的参数,我们把文件命名为 :execute_python_script.bat

接着我们开始步骤三的操作

添加一个OS Process Sampler

我们看下这个界面该如何配置:

这会调用外部Python脚本,并传入参数input_param

最后一步操作

添加一个正则表达式提取器,编写正则,看看能不能提取到结果:

最后我们用debug sample檢測最终结果:

这样整个流程完成了,也就可以很方便的调用外部文件做接口自动化了。

二、其他方案

这里再简单介绍两种能够处理python代码的方案:

  1. 使用函数助手[jmeter-functions-execute-python-script-1.0.jar]
    链接:https://pan.baidu.com/s/1JrPW723es9rFbp18mNAvug?pwd=thjp 提取码:thjp
    这个就直接放入到:\lib\ext 下面就行,然后重启jmeter
    使用如图:
  1. 使用BeanShell Sampler组件
    这个需要一定的java代码能力,大伙可以自行看着玩,因烦不建议,前面的os process sample 舒服,也就是说,既然都要写beanshell了,直接java代码干就完事了,哈哈!。
    示例代码,不保证能用:

import java.io.BufferedReader;
import java.io.InputStreamReader;

//1. 命令里的路径改成自己脚本的路径  
String command = "/opt/homebrew/bin/python3 /Users/xxx/Code/python-mysql/gen_id.py";

Runtime rt = Runtime.getRuntime();
Process pr = rt.exec(command);

pr.waitFor();

BufferedReader b = new BufferedReader(new InputStreamReader(pr.getInputStream()));
String line = "";
StringBuilder response = new StringBuilder();
while ((line = b.readLine()) != null) {
    response.append(line);
}

String response_data = response.toString();

System.out.println(response_data);
log.info(response_data);
b.close();

// 2. 定义Jmeter中引用的变量名
vars.put("xxx",response_data); //把结果赋值给变量 ,方便后面调用

By the way,很多小伙伴反馈说既然用jmeter了,干嘛还往里整python代码,不是多此一举嘛?这里勇哥谈谈自己的几点愚见:

  1. 现有代码复用:有时候可能我们有一些现成的python代码用特定的操作或者业务逻辑,嵌入这些python代码就可以避免重复造轮子了

  2. 代码能力:很多测试人员的技术栈是偏python的,在使用jmeter做自动化测试时,利用python的灵活及强大的库工具就很容易入手了。

  3. 集成其他工具:可能有一些自己的python工具很好用,但是想集成到一起就可以考虑这样的偏方了

总之jmeter既然可以这样玩,那么给到用户也就多一种使用体验,多一种解决问题的可能性。

总结

以上就是勇哥今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我:公众号\博客\CSDN\B站:测试玩家勇哥;我会不定期地分享更多的精彩内容。感谢你的阅读和支持!


题外话,勇哥打算把新建的技术交流群,打造成一个活跃的高质量技术群。工作中遇到的技术问题,都可以在里面咨询大家,还有工作内推的机会。有兴趣的小伙伴,欢迎加我(记得备注是进群还是报名学习)👇👇👇**

**👆**👆**👆长按上方二维码2秒,关注我**


勇哥,10年落魄测试老司机,技术栈偏python,目前在一家超大型房产公司担任自动化测试主管,日常工作比较繁杂,主要负责自动化测试,性能测试、软件质量管理及人员管理。工作之余专注于为粉丝进行简历修改、面试辅导、模拟面试、资料分享、一对一自动化测试教学辅导等副业发展。目前已服务十多位小伙伴,取得高薪offer。

关注公众号,测试干货及时送达

往期精选文章👇:
接口自动化测试项目2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等
揭秘抓包利器:Python和Mitmproxy让您轻松实现接口请求抓取与分析!
构建高效的接口自动化测试框架思路
Pytest 快速入门
接口自动化之测试数据动态生成并替换
requests模块该如何封装?
接口自动化如何封装mysql操作
一文看懂python如何执行cmd命令
最通俗易懂python操作数据库
python-Threading多线程之线程锁
python正则一篇搞掂
性能测试之必备知识

性能分析思

Python + ChatGPT来实现一个智能对话的钉钉机器人
一文看懂python如何执行cmd命令
相关文章
|
14天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
4天前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
28 7
|
14天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
46 11
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
11天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
14天前
|
数据库 Python
Python 应用
Python 应用。
37 4
|
11天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
17天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
63 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
14 8
|
3天前
|
机器人 计算机视觉 Python
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
16 5
下一篇
无影云桌面