地理位置数据存储方案——Redis GEO

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 地理位置数据存储方案之redis-geo探索:基础介绍与源码解析。

一 题外话

   说起这个话题,就总会不由得想起刚毕业的时候,当时在导师的带领下,调研并使用了geo server和postgreSQL。geo server做图层和位置信息展示,而pg则用来存储地理位置数据。一转眼至今已有十年光景,真是让人感慨,十年,弹指一挥间。

二 GEO存储方案与空间索引

2.1 存储方案

   目前支持空间数据存储的方案很多,Esri公司的ArcSDE(Spatial Database Engine,空间数据库引擎),包括Oracle,SQL Server,IBM DB2都做了很好的支持,不过都是商业数据库,需要收费。开源领域,mysql、redis、elasticsearch、mongodb、postgreSQL等都做了相关支持。实现方案各自不同,使用上也有差异,简单理解,都是数据+索引结构组成的支撑,通过api来进行调用(废话)。

2.2 空间索引

   目前空间索引的实现有R树和其变种GIST树、四叉树、网格索引等。GeoHash也是空间索引的一种方式,并且特别适合点数据,而对线、面数据采用R树索引更有优势。

三 Redis GEO

3.1 命令

    Redis 3.2 版本新增了geo相关命令,用于存储和操作地理位置信息。提供的命令包括添加、计算位置之间距离、根据中心点坐标和距离范围来查询地理位置集合等,说明如下:

  • geoadd:添加地理位置的坐标。
  • geopos:获取地理位置的坐标。
  • geodist:计算两个位置之间的距离。
  • georadius:根据用户给定的经纬度坐标来获取指定范围内的地理位置集合。
  • georadiusbymember:根据储存在位置集合里面的某个地点获取指定范围内的地理位置集合。
  • geohash:返回一个或多个位置对象的 geohash 值。

3.2 原理:redis源码解析

3.2.1 数据结构简述

   Redis geo并不是全新的数据结构,而是基于Sorted Set来实现的(这点我们会在后面进行说明)。说起sorted set,大家肯定了解zset,也是redis中常用的数据结构。

   我们看一下redis geo的源码,从中可以更好地理解数据结构和操作原理。redis源码可从https://github.com/redis/redis获取,我们切换到正在使用的3.2branch(也可以根据实际使用情况,切换到对应版本的分支)。3.2下的geo相关源码文件主要是src下的geo.h 和 geo.c,以及deps/geohash-int下的geohash.c,geohash.h,geohash_helper.h 和 geohash_helper.c。

3.2.2 geo.h

   geo.h是数据结构定义,里面包括了geoPoint 和 geoArray两个结构体,内容如下:

#ifndef __GEO_H__
#define __GEO_H__
#include "server.h"
/* Structures used inside geo.c in order to represent points and array of
 * points on the earth. */
typedef struct geoPoint {
    double longitude;
    double latitude;
    double dist;
    double score;
    char *member;
} geoPoint;
typedef struct geoArray {
    struct geoPoint *array;
    size_t buckets;
    size_t used;
} geoArray;
#endif

   可见geoPoint的字段包括 经度longitude、纬度latitude 这两个标识位置的基本字段,dist表示距离,member是成员(点)的名称/标识,以及score。score的含义是什么?聪明的小伙伴可能已经想到,应该是我们最开始提到的geohash值。其他的小伙伴不要着急,我们一起到geo.c中寻找答案。

3.2.3 geo.c

   geo.c是geo核心方法定义,内容不算很多,3.2版本的geo.c文件只有825行,所以阅读起来也并不复杂。

   这里定义了我们从redis客户端输入各redis命令的处理函数。geoaddCommand,georadiusCommand,geohashCommand,geoposCommand,geodistCommand等等,其中还有georadius的一系列包装函数,在void georadiusGeneric(client *c, int flags) 函数中定义了具体的处理逻辑:

   我们再详细看一下geoaddCommand(client *c)方法:

409-414行是校验逻辑,判断是否存在语法错误;

接下来是参数提取和处理。在419和420行,我们可以看到熟悉的命令:zadd;

接下来就更清晰了,注释中就已经明确写到:

   创建参数向量并调用zadd方法,来把所有的score,value队插入到zset中,这里score实际上是lat,long的编码版本。

什么编码?438-441行明确写出了答案,geohash(geohashEncodeWGS84,使用wgs84坐标系的geohash编码。wgs84坐标系即大地坐标系)。

3.3 操作实践

   上面我们分析了,redis geo虽然是通过geopos,geoadd等提供了操作命令,但底层实际上是基于zset来存储的,并且在geoadd命令中,也出现了转zadd操作的源码,那么我们是否可以直接使用zset的相关命令来操作redis geo的存储呢?

3.3.1 redis环境

   redis server版本3.2,本地单机部署,未设置密码。

3.3.2 命令行客户端连接

redis-cli -h mylocalhost  -p 8179 --raw

   注意:这里加上了--raw的参数。这是因为,当我们在redis中存储value包含中文时,如果不加上--raw,就会显示为unicode编码格式,如下:

   --raw参数,官网的解释中,包括以下两个作用:1.按数据原有格式打印数据,不展示额外的类型信息(例如整数value之前的 (integer) 2);2. 显示中文。

3.3.3 geo-zset操作验证

   先通过geoadd添加一条记录:

   geopos查看成员位置:

   重点来了,接下来我们通过zrange 来查询集合元素:

   显然是可以的。也就是说,user_local就是一个zset。

   接下来,我们看一下刚刚添加进来的test_1这个成员的score:

   score值为 4174690127103984,回顾之前我们看过的geoadd源码,也就是说test_1的经纬度,对应的geohash值就是4174690127103984。

四 springframework与redis geo

   springframework中已经加入了对redis geo的支持,相关的类都在org.springframework.data.geo包下。而对redis的命令行交互,也提供了org.springframework.data.redis相关的类来支持相关开发。

   为了在项目中方便使用,整理工具代码如下,主要封装了:

1、添加元素到redisgeo;

2、计算某指定集合下,给定中心和查询范围,获取区域内成员的方法;

3、计算两个成员的距离

4、查询某指定成员(数组)的位置信息

相关方法,如有需要可供参考:

package tool;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.geo.GeoResult;
import org.springframework.data.geo.Metrics;
import org.springframework.data.geo.Point;
import org.springframework.data.geo.Circle;
import org.springframework.data.geo.Distance;
import org.springframework.data.geo.GeoResults;
import org.springframework.data.redis.connection.RedisGeoCommands;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import java.util.List;
@Component
public class RedisGeoTool {
    @Autowired
    private RedisTemplate<String,String> redisTemplate;
    /**
     * 添加节点及位置信息
     * @param geoKey 位置集合
     * @param pointName 位置点标识
     * @param longitude 经度
     * @param latitude 纬度
     */
    public void geoAdd(String geoKey, String pointName, double longitude, double latitude){
        Point point = new Point(longitude, latitude);
        redisTemplate.opsForGeo().add(geoKey, point, pointName);
    }
    /**
     *
     * @param longitude
     * @param latitude
     * @param radius
     * @param geoKey
     * @param metricUnit 距离单位,例如 Metrics.KILOMETERS
     * @param metricUnit
     * @return
     */
    public List<GeoResult<RedisGeoCommands.GeoLocation<String>>> findRadius(String geoKey
            , double longitude, double latitude, double radius, Metrics metricUnit, int limit){
        // 设置检索范围
        Point point = new Point(longitude, latitude);
        Circle circle = new Circle(point, new Distance(radius, metricUnit));
        // 定义返回结果参数,如果不指定默认只返回content即保存的member信息
        RedisGeoCommands.GeoRadiusCommandArgs args = RedisGeoCommands.GeoRadiusCommandArgs
                .newGeoRadiusArgs().includeDistance().includeCoordinates()
                .sortAscending()
                .limit(limit);
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = redisTemplate.opsForGeo().radius(geoKey, circle, args);
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        return list;
    }
    /**
     * 计算指定key下两个成员点之间的距离
     * @param geoKey
     * @param member1
     * @param member2
     * @param unit 单位
     * @return
     */
    public Distance calDistance(String geoKey, String member1, String member2
            , RedisGeoCommands.DistanceUnit unit){
        Distance distance = redisTemplate.opsForGeo()
                .distance(geoKey, member1, member2, unit);
        return distance;
    }
    /**
     * 根据成员点名称查询位置信息
     * @param geoKey geo key
     * @param members 名称数组
     * @return
     */
    public List<Point> geoPosition(String geoKey, String[] members){
        List<Point> points = redisTemplate.opsForGeo().position(geoKey, members);
        return points;
    }
}

五 实战思路

   基于上述理解和代码,我们可以实现一些简单的demo了。也可以基于此实现一个基于某中心点查询周围商铺之类的功能,但要应用到实战当中还远远不够。在真实的系统中,还需要考虑以下几个问题:

1、redis作为缓存还是数据库使用?

2、redis geo中存储的信息是否完整?是否还需要存储其他辅助信息?

3、可能会有多类位置点,实际需求会要求根据类别查询?

4、当发生数据迁移时,怎样保证redis geo中的数据完整?最多支持存储多少个空间数据?

....

   一些比较容易想到的可能方案,比如结合其他持久化存储使用,做好一致性保障;member中包含id信息,用于查询明细信息;通过多个key对位置数据分类存储等等。但最终还需要根据实际需求,给出整套可行的方案,形成合理的架构设计,这样才能让我们做出的系统不再只是个demo,或者玩具。在后续的文章中,我们会继续进行探讨。

相关文章
|
9月前
|
canal NoSQL 关系型数据库
Redis应用—7.大Value处理方案
本文介绍了一种用于监控Redis大key的方案设计及其实现步骤。主要内容包括:方案设计、安装与配置环境、binlog数据消费者。
368 29
Redis应用—7.大Value处理方案
|
3月前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
3月前
|
存储 消息中间件 缓存
Redis 简介:打造快速数据存储的利器
Redis 是一款开源的内存数据结构服务器,支持字符串、哈希、列表等多种数据结构,具备高性能、持久化、高可用及分布式特性,适用于缓存、会话管理、实时统计等场景。
|
4月前
|
监控 NoSQL 关系型数据库
保障Redis与MySQL数据一致性的强化方案
在设计时,需要充分考虑到业务场景和系统复杂度,避免为了追求一致性而过度牺牲系统性能。保持简洁但有效的策略往往比采取过于复杂的方案更加实际。同时,各种方案都需要在实际业务场景中经过慎重评估和充分测试才可以投入生产环境。
261 0
|
7月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
559 3
|
9月前
|
存储 监控 NoSQL
Redis集群有哪些方案
1. 主从复制集群 : 读写分离, 一主多从 , 解决高并发读的问题 2. 哨兵集群 : 主从集群的结构之上 , 加入了哨兵用于监控集群状态 , 主节点出现故障, 执行主从切换 , 解决高可用问题 3. Cluster分片集群 : 多主多从 , 解决高并发写的问题, 以及海量数据存储问题 , 每个主节点存储一部分集群数据
|
9月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
11月前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
323 1
|
12月前
|
存储 监控 NoSQL
Redis集群方案汇总:概念性介绍
本文介绍了Redis的三种高可用和分布式解决方案:**Redis Replication(主从复制)**、**Redis Sentinel(哨兵模式)** 和 **Redis Cluster(集群模式)**。Redis Replication实现数据备份和读写分离,适合数据安全和负载均衡场景;Redis Sentinel提供自动故障转移和监控功能,适用于读写分离架构;Redis Cluster通过分布式存储和自动故障转移,解决单点性能瓶颈,适合大规模数据和高并发场景。文中还详细描述了各方案的工作原理、优缺点及适用场景。
294 0
|
存储 NoSQL PHP
PHP与Redis结合使用,提升数据存储性能
随着互联网应用的发展,PHP与Redis的结合成为提升数据存储性能的重要手段。PHP作为流行的服务器端语言,常用于网站开发;Redis作为高性能内存数据库,以其快速读写能力,有效优化数据访问速度,减轻数据库压力。两者结合通过缓存机制显著提升应用响应速度,支持高并发场景下的稳定性和可扩展性。