Python爬虫抓取经过JS加密的API数据的实现步骤

本文涉及的产品
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: Python爬虫抓取经过JS加密的API数据的实现步骤

随着互联网的快速发展,越来越多的网站和应用程序提供了API接口,方便开发者获取数据。然而,为了保护数据的安全性和防止漏洞,一些API接口采用了JS加密技术这种加密技术使得数据在传输过程中更加安全,但也给爬虫开发带来了一定的难度。。

在面对经过JS加密的API数据时,我们需要分析加密算法和参数,以便我们在爬虫中模拟加密过程,获取解密后的数据。为了实现这一目标,可以使用Python的相关库和工具,如requests、execjs等。

原因分析及解决方案:

  1. 原因分析:JS加密算法是一种常见的数据保护方式,它可以有效地阻止未经授权的访问者获取数据。通过在API接口中使用JS加密算法,可以方确保只有经过授权的用户才能提供数据然而,这也给我们的数据挖掘工作带来了一定的难题。
  2. 解决方案:虽然JS加密算法增加了数据抓取的难度,但我们仍然可以通过一些方法来解决这个问题。以下是一种常见的解决方案:

A。分析JS加密算法:首先,我们需要分析JS加密算法的实现细节。通过查看网页源码或使用开发者工具,我们可以找到本本加密算法的相关代码。

import requests
from bs4 import BeautifulSoup
# 发起请求获取网页源码
url = "https://example.com"
response = requests.get(url)
html = response.text
# 使用BeautifulSoup解析网页源码
soup = BeautifulSoup(html, "html.parser")
# 查找JS加密算法的相关代码
js_code = ""
script_tags = soup.find_all("script")
for script_tag in script_tags:
    if "加密算法" in script_tag.text:
        js_code = script_tag.text
        break
# 打印JS加密算法的代码
print(js_code)

B.使用第三方库JS模拟环境,当我们使用第三方库来模拟JS环境,并执行JS脚本来获取解密后的数据时,可以使用PyExecJS库来实现。以下是一个示例展示,如何使用PyExecJS库来执行JS脚本并获取解密后的数据数据

import execjs
import requests
# 亿牛云爬虫代理参数设置
proxyHost = "u6205.5.tp.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"
# 设置代理
proxies = {
    "http": f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}",
    "https": f"https://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}"
}
# 执行JS脚本获取解密后的数据
def get_decrypted_data():
    with open("encryption.js", "r") as f:
        js_code = f.read()
    ctx = execjs.compile(js_code)
    encrypted_data = ctx.call("decrypt_data")
    response = requests.get(f"https://api.example.com/data?encrypted_data={encrypted_data}", proxies=proxies)
    decrypted_data = response.json()
    return decrypted_data
# 调用函数获取解密后的数据
decrypted_data = get_decrypted_data()
print(decrypted_data)

请注意,PyExecJS库可以根据您的系统环境自动选择合适的JS运行时。您需要确保已安装相应的JS运行时,如Node.js或PhantomJS。

通过分析 JS 加密算法和在 Python 中实现相同的算法,我们可以成功地抓取经过 JS 加密的 API 数据。以上是一个简单的示例,您可以根据实际情况进行相应的调整和优化。

相关文章
|
7天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
8天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
9天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
4天前
|
数据采集 前端开发 JavaScript
除了网页标题,还能用爬虫抓取哪些信息?
爬虫技术可以抓取网页上的各种信息,包括文本、图片、视频、链接、结构化数据、用户信息、价格和库存、导航菜单、CSS和JavaScript、元数据、社交媒体信息、地图和位置信息、广告信息、日历和事件信息、评论和评分、API数据等。通过Python和BeautifulSoup等工具,可以轻松实现数据抓取。但在使用爬虫时,需遵守相关法律法规,尊重网站的版权和隐私政策,合理控制请求频率,确保数据的合法性和有效性。
|
5天前
|
JSON API 数据格式
淘宝 / 天猫官方商品 / 订单订单 API 接口丨商品上传接口对接步骤
要对接淘宝/天猫官方商品或订单API,需先注册淘宝开放平台账号,创建应用获取App Key和App Secret。之后,详细阅读API文档,了解接口功能及权限要求,编写认证、构建请求、发送请求和处理响应的代码。最后,在沙箱环境中测试与调试,确保API调用的正确性和稳定性。
|
10天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
14天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
17天前
|
供应链 数据挖掘 API
电商API接口介绍——sku接口概述
商品SKU(Stock Keeping Unit)接口是电商API接口中的一种,专门用于获取商品的SKU信息。SKU是库存量单位,用于区分同一商品的不同规格、颜色、尺寸等属性。通过商品SKU接口,开发者可以获取商品的SKU列表、SKU属性、库存数量等详细信息。
|
18天前
|
JSON API 数据格式
店铺所有商品列表接口json数据格式示例(API接口)
当然,以下是一个示例的JSON数据格式,用于表示一个店铺所有商品列表的API接口响应
|
28天前
|
编解码 监控 API
直播源怎么调用api接口
调用直播源的API接口涉及开通服务、添加域名、获取API密钥、调用API接口、生成推流和拉流地址、配置直播源、开始直播、监控管理及停止直播等步骤。不同云服务平台的具体操作略有差异,但整体流程简单易懂。