算法训练Day17|● 104.二叉树的最大深度 559.n叉树的最大深度● 111.二叉树的最小深度● 222.完全二叉树的节点个数

简介: 算法训练Day17|● 104.二叉树的最大深度 559.n叉树的最大深度● 111.二叉树的最小深度● 222.完全二叉树的节点个数

LeetCode:104.二叉树的最大深度

104.二叉树的最大深度-力扣(leetcode)

1.思路

递归方法来实现

理论上,深度应该从根节点计数,直到最深的叶子节点。故采用前序遍历是统一的。

高度应该从叶子节点计数,直到根节点为止。故采用后序遍历时统一的。

但,由于最大深度和最大高度是同一个数值,所以前序遍历和后续遍历结果是一致的。

但,层序遍历应该是最好理解的。


2.代码实现

递归实现

 1// 递归
 2class Solution {
 3    public int maxDepth(TreeNode root) {
 4        if (root == null) {
 5            return 0;
 6        }
 7        int getLeft = maxDepth(root.left);
 8        int getright = maxDepth(root.right);
 9        return Math.max(getLeft, getright) + 1; // 遇到最底层节点进行 +1 操作, 这个过程属于回溯
10    }   
11}
迭代法实现(层序遍历

该代码通过广度优先搜索(BFS)的方式计算二叉树的最大深度。使用一个队列来存储每一层的节点,每次遍历完一层后,深度加1。直到队列为空,即遍历完整个二叉树,返回最大深度。

 1class Solution {
 2    public int maxDepth(TreeNode root) {
 3        if (root == null) { // 如果根节点为空,返回深度为0
 4            return 0;
 5        }
 6        Queue<TreeNode> queue = new LinkedList<>(); // 创建一个队列来存储节点
 7        queue.offer(root); // 将根节点加入队列
 8        int ans = 0; // 初始化深度为0
 9        while (!queue.isEmpty()) { // 当队列不为空时循环
10            int size = queue.size(); // 获取当前层的节点数量
11            while (size > 0) { // 遍历当前层的所有节点
12                TreeNode node = queue.poll(); // 从队列中取出一个节点
13                if (node.left != null) { // 如果节点的左子节点不为空,将左子节点加入队列
14                    queue.offer(node.left);
15                }
16                if (node.right != null) { // 如果节点的右子节点不为空,将右子节点加入队列
17                    queue.offer(node.right);
18                }
19                size--; // 当前层节点数量减1
20            }
21            ans++; // 每遍历完一层,深度加1
22        }
23        return ans; // 返回最大深度
24    }
25}

3.复杂度分析

递归:

时间复杂度:O(n),需要遍历到每个节点,故为O(n)

空间复杂度:O(height),用栈存储深度,所以空间消耗为height/depth.

层序:

时间复杂度:O(n),需要遍历到每个节点,故为O(n)

空间复杂度:O(n)+O(size)+O(ans),用队列暂存,额外用到size、ans..


LeetCode:559.n叉树的最大深度

559.N叉树的最大深度-力扣(leetcode)

1.思路

2.代码实现

 1class Solution {
 2    public int minDepth(TreeNode root) {
 3        if (root == null) {
 4            return 0;
 5        }
 6        int getLeft = minDepth(root.left);
 7        int getRight = minDepth(root.right);
 8        // 左子树为null时
 9        if (root.left == null) {
10            return getRight + 1;
11        }
12        // 右子树为null
13        if (root.right == null) {
14            return getLeft + 1;
15        }
16        // 根节点左右子树都不为null时,取两子树较小值
17        return Math.min(getLeft, getRight) + 1;
18    }
19}

3.复杂度分析

时间复杂度:O(logN/2 ✖ logN/2)

空间复杂度:O(1),常数项存储最大深度的数值


LeetCode:111.二叉树的最小深度

111. 二叉树的最小深度 - 力扣(LeetCode)


1.思路

最小深度和最大深度思路基本一致,需要注意的是,要排除根节点左右子树为空的情况。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。叶子节点是指没有子节点的节点。


2.代码实现

 1class Solution {
 2    public int minDepth(TreeNode root) {
 3        if (root == null) {
 4            return 0;
 5        }
 6        int getLeft = minDepth(root.left);
 7        int getRight = minDepth(root.right);
 8        // 左子树为null时
 9        if (root.left == null) {
10            return getRight + 1;
11        }
12        // 右子树为null
13        if (root.right == null) {
14            return getLeft + 1;
15        }
16        // 根节点左右子树都不为null时,取两子树较小值
17        return Math.min(getLeft, getRight) + 1;
18    }
19}

3.复杂度分析

时间复杂度:遍历每个节点,故为O(N)

空间复杂度:取决于递归时,栈空间的开销。最坏情况下,树呈链状,空间复杂度为O(N),平均情况下树的高度与节点数的对数呈正相关,空间复杂度为O(logN).

LeetCode:222.完全二叉树的节点个数

222.完全二叉树的节点个数-力扣(leetcode)

1.思路

2.代码实现

递归法
 1// 递归实现
 2class Solution {
 3    public int countNodes(TreeNode root) {
 4        if (root == null) {
 5            return 0;
 6        }
 7        int leftCount = countNodes(root.left);
 8        int rightCount = countNodes(root.right);
 9        int sum = leftCount + rightCount + 1;
10        return sum;
11    }
12}
迭代法
 1// 迭代法
 2class Solution {
 3    public int countNodes(TreeNode root) {
 4        if (root == null) {
 5            return 0;
 6        }
 7        Queue<TreeNode> queue = new LinkedList<>(); // 创建层序遍历的辅助队列
 8        queue.offer(root);
 9        int sum = 0;
10        while (!queue.isEmpty()) {
11            int size = queue.size();
12            while (size > 0) {
13                TreeNode cur = queue.poll();
14
15                size--;
16                sum++;
17                if (cur.left != null) {
18                    queue.offer(cur.left);
19                }
20                if (cur.right != null) {
21                    queue.offer(cur.right);
22                }  
23            }
24        }
25        return sum;
26    }
27}

3.复杂度分析

递归法:

时间复杂度:O(logN/2 ✖ logN/2)

空间复杂度:O(N),代码随想录给的是O(logN),存疑!

相关文章
|
4天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
51 2
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
64 5
|
3月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
3月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
97 5
|
1天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
2天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
29 15
|
2天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。

热门文章

最新文章