canal 是阿里知名的开源项目,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费。
这篇文章,我们手把手向同学们展示使用 canal 将 MySQL 增量数据同步到 ES 。
1 集群模式
图中 server 对应一个 canal 运行实例 ,对应一个 JVM 。
server 中包含 1..n 个 instance , 我们可以将 instance 理解为配置任务。
instance 包含如下模块 :
eventParser
数据源接入,模拟 slave 协议和 master 进行交互,协议解析
eventSink
Parser 和 Store 链接器,进行数据过滤,加工,分发的工作
eventStore
数据存储
metaManager
增量订阅 & 消费信息管理器
真实场景中,canal 高可用依赖 zookeeper ,笔者将客户端模式可以简单划分为:TCP 模式 和 MQ 模式 。
实战中我们经常会使用 MQ 模式 。因为 MQ 模式的优势在于解耦 ,canal server 将数据变更信息发送到消息队列 kafka 或者 RocketMQ ,消费者消费消息,顺序执行相关逻辑即可。
顺序消费:
对于指定的一个 Topic ,所有消息根据 Sharding Key 进行区块分区,同一个分区内的消息按照严格的先进先出(FIFO)原则进行发布和消费。同一分区内的消息保证顺序,不同分区之间的消息顺序不做要求。
2 MySQL配置
1、对于自建 MySQL , 需要先开启 Binlog 写入功能,配置 binlog-format 为 ROW 模式,my.cnf 中配置如下
[mysqld]
log-bin=mysql-bin # 开启 binlog
binlog-format=ROW # 选择 ROW 模式
server_id=1 # 配置 MySQL replaction 需要定义,不要和 canal 的 slaveId 重复
注意:针对阿里云 RDS for MySQL , 默认打开了 binlog , 并且账号默认具有 binlog dump 权限 , 不需要任何权限或者 binlog 设置,可以直接跳过这一步。
2、授权 canal 链接 MySQL 账号具有作为 MySQL slave 的权限, 如果已有账户可直接 grant 。
CREATE USER canal IDENTIFIED BY 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
-- GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;
FLUSH PRIVILEGES;
3、创建数据库商品表 t_product
。
CREATE TABLE `t_product` (
`id` BIGINT ( 20 ) NOT NULL AUTO_INCREMENT,
`name` VARCHAR ( 255 ) COLLATE utf8mb4_bin NOT NULL,
`price` DECIMAL ( 10, 2 ) NOT NULL,
`status` TINYINT ( 4 ) NOT NULL,
`create_time` datetime NOT NULL,
`update_time` datetime NOT NULL,
PRIMARY KEY ( `id` )
) ENGINE = INNODB DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_bin
3 Elasticsearch配置
使用 Kibana 创建商品索引
。
PUT /t_product
{
"settings": {
"number_of_shards": 2,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"id": {
"type":"keyword"
},
"name": {
"type":"text"
},
"price": {
"type":"double"
},
"status": {
"type":"integer"
},
"createTime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"updateTime": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
执行完成,如图所示 :
4 RocketMQ 配置
创建主题:product-syn-topic
,canal 会将 Binlog
的变化数据发送到该主题。
5 canal 配置
我们选取 canal 版本 1.1.6
,进入 conf
目录。
1、配置 canal.properties
#集群模式 zk地址
canal.zkServers = localhost:2181
#本质是MQ模式和tcp模式 tcp, kafka, rocketMQ, rabbitMQ, pulsarMQ
canal.serverMode = rocketMQ
#instance 列表
canal.destinations = product-syn
#conf root dir
canal.conf.dir = ../conf
#全局的spring配置方式的组件文件 生产环境,集群化部署
canal.instance.global.spring.xml = classpath:spring/default-instance.xml
###### 以下部分是默认值 展示出来
# Canal的batch size, 默认50K, 由于kafka最大消息体限制请勿超过1M(900K以下)
canal.mq.canalBatchSize = 50
# Canal get数据的超时时间, 单位: 毫秒, 空为不限超时
canal.mq.canalGetTimeout = 100
# 是否为 flat json格式对象
canal.mq.flatMessage = true
2、instance 配置文件
在 conf
目录下创建实例目录 product-syn
, 在 product-syn
目录创建配置文件 :instance.properties
。
# 按需修改成自己的数据库信息
#################################################
...
canal.instance.master.address=192.168.1.20:3306
# username/password,数据库的用户名和密码
...
canal.instance.dbUsername = canal
canal.instance.dbPassword = canal
...
# table regex
canal.instance.filter.regex=mytest.t_product
# mq config
canal.mq.topic=product-syn-topic
# 针对库名或者表名发送动态topic
#canal.mq.dynamicTopic=mytest,.*,mytest.user,mytest\\..*,.*\\..*
canal.mq.partition=0
# hash partition config
#canal.mq.partitionsNum=3
#库名.表名: 唯一主键,多个表之间用逗号分隔
#canal.mq.partitionHash=mytest.person:id,mytest.role:id
#################################################
3、服务启动
启动两个 canal 服务,我们从 zookeeper gui 中查看服务运行情况 。
修改一条 t_product
表记录,可以从 RocketMQ 控制台中观测到新的消息。
6 消费者
1、产品索引操作服务
2、消费监听器
消费者逻辑重点有两点:
- 顺序消费监听器
- 将消息数据转换成 JSON 字符串,从
data
节点中获取表最新数据(批量操作可能是多条)。然后根据操作类型UPDATE
、INSERT
、DELETE
执行产品索引操作服务
的方法。
7 写到最后
canal 是一个非常有趣的开源项目,很多公司使用 canal 构建数据传输服务
( Data Transmission Service ,简称 DTS ) 。
推荐大家阅读这个开源项目,你可以从中学习到网络编程、多线程模型、高性能队列 Disruptor、 流程模型抽象等。
这篇文章涉及到的代码已收录到下面的工程中,有兴趣的同学可以一看。
如果我的文章对你有所帮助,还请帮忙点赞、在看、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!