社区供稿 | 达摩院自研开放域文本理解大模型登陆魔搭社区

简介: SeqGPT是一个不限领域的文本理解大模型。无需训练,即可完成实体识别、文本分类、阅读理解等多种任务。该模型基于Bloomz在数以百计的任务数据上进行指令微调获得。模型可以在低至16G显存的显卡上免费使用。目前SeqGPT已经在魔搭社区开源,欢迎体验!

SeqGPT是一个不限领域的文本理解大模型。无需训练,即可完成实体识别、文本分类、阅读理解等多种任务。该模型基于Bloomz在数以百计的任务数据上进行指令微调获得。模型可以在低至16G显存的显卡上免费使用。目前SeqGPT已经在魔搭社区开源,欢迎体验!


ModelScope开源直达:

模型卡片:
https://www.modelscope.cn/models/damo/nlp_seqgpt-560m


创空间体验:
https://www.modelscope.cn/studios/TTCoding/open_ner/summary

论文地址:https://arxiv.org/abs/2308.10529


github地址: https://github.com/Alibaba-NLP/SeqGPT

本文将为大家展开关于SeqGPT的详细技术解析介绍

适用范围


本模型可用于任何自然语言理解任务。用户只需给定类型标签即可。不同任务的标签给定方式可以参考以下例子:


事件抽取输入: 今日走势:中国银河今日触及涨停板,该股近一年涨停9次。抽取: 财经/交易事件、事件财经/交易-涨停的时间、事件财经/交易-涨停的涨停股票输出: 财经/交易事件: 涨停 事件财经/交易-涨停的时间: 今日 事件财经/交易-涨停的涨停股票: 中国银河输入: She laid still.抽取: Placing event输出: Placing event: laid


阅读理解-抽取输入: 根据上述采信证据,结合原告陈述,本院确认事实如下:2015年9月26日,苏0与陈x11签订《借款合同》,约定陈x11向苏0借款10000元用于经营资金周转、家庭生活开支,借款期限至2015年12月26日,并约定利息为月利率2%同日,陈x11出具收据确认收到苏0 10000元至本案辩论终结之日止,上述借款尚未归还另查明,陈x11与冼5于××××年××月××日登记结婚陈x4、陈x2、陈x3、陈x1是陈x11的女儿抽取: 陈x11向苏0借了多少钱输出: 10000元


实体识别输入: 赛后公牛队主教练杰克逊对罗德曼的表现大加赞赏。抽取: 组织机构,人物,地点 输出:组织机构: 公牛队 人物: 罗德曼 杰克逊 地点: None输入: In Venezuela , her mother told Reuters that Machado had a swollen face when she left home two weeks ago because she had her wisdom teeth extracted .抽取: organisation,person,misc,location输出: organisation: Reuters person: Machado misc: None location: Venezuela


意图识别输入: 坐地铁您可以从永泰庄地铁站D口上地铁,在灯市口地铁站A口下地铁,在步行不远就到了。分类: Inform,Request输出: Inform输入: find travel arrangements for a round trip flight from dallas to pittsburgh分类: ground_service,restriction,day_name,abbreviation,ground_fare,flight_no,aircraft,flight,meal,capacity,city输出: flight


自然语言推理输入: 这个池塘今天仍然存在,离乔巴尔峡谷不远。池塘很久以前就干了。分类: contradiction,neutral,entailment 输出: contradiction输入: Red! You, Red! Are you up there? Now don't try to hide. Red! Where are you? 分类: neutral,entailment,contradiction 输出: entailment


关系抽取输入: 灵魂的痛(末代御医主题曲)主唱:胡鸿钧视频来自:优酷中灵魂的痛和末代御医的关系是什么?分类: 主题曲,国籍,父亲,总部地点 输出: 主题曲输入: the tie be go away from man 's wardrobes . What is the relation between tie and wardrobes? 分类: Entity-Origin,Content-Container,Instrument-Agency,Entity-Destination,Message-Topic,Component-Whole,Product-Producer 输出: Entity-Origin


训练数据和模型评估


训练分类两个阶段,分别为:预训练和微调,两阶段数据分别为:预训练数据:包含来自多个领域(包括维基百科、新闻和社交媒体等)极其多样化的标签集的数据。


我们主要选择了三个任务:分类(CLS)、实体分类(ET)和实体识别(NER)。我们通过调用ChatGPT为每个样本获得伪标签。


最终,PT数据集包含1,146,271个实例和817,075个不同的标签。微调数据:我们收集了来自不同领域的大规模高质量NLU数据集进行微调。如下图所示,我们的微调(FT)数据集包含110个NLU数据集,涵盖英语和中文两种语言以及10大类任务。除了任务多样性外,领域(包括医学、新闻和与AI助手的对话)的多样性以及标签多样性也保证了数据多样性。每个任务被转化为原子任务,共产生了139个分类原子任务和94个抽取原子任务。

模型评估及结果:


创空间体验



在创空间可以零门槛体验开放域NLU模型的能力,示例如下:


模型推理


模型推理

在魔搭社区免费NoteBook环境,使用ModelScope的最新master分支

git clone https://github.com/modelscope/modelscope.git
cd modelscope
pip install .


模型推理代码

from modelscope.utils.constant import Tasks
from modelscope.pipelines import pipeline
# task可选值为 抽取、分类。text为需要分析的文本。labels为类型列表,中文逗号分隔。
inputs = {'task': '抽取', 'text': '杭州欢迎你。', 'labels': '地名'}
# PROMPT_TEMPLATE保持不变
PROMPT_TEMPLATE = '输入: {text}\n{task}: {labels}\n输出: '
prompt = PROMPT_TEMPLATE.format(**inputs)
pipeline_ins = pipeline(task=Tasks.text_generation, model='damo/nlp_seqgpt-560m')
print(pipeline_ins(prompt))
# {'text': '地名: 杭州\n'}


总结

本文介绍了SeqGPT,用一个统一的模型,通过将不同的NLU任务转化为两个通用的原子任务来处理。SeqGPT提供了一致的输入输出格式,使其能够通过任意变化的标签集来解决未见过的任务,而不需要繁琐的提示工程而且结果易于解析。


https://www.modelscope.cn/studios/TTCoding/open_ner/summary

相关文章
|
4月前
|
人工智能 缓存 自然语言处理
Java与多模态AI:构建支持文本、图像和音频的智能应用
随着大模型从单一文本处理向多模态能力演进,现代AI应用需要同时处理文本、图像、音频等多种信息形式。本文深入探讨如何在Java生态中构建支持多模态AI能力的智能应用。我们将完整展示集成视觉模型、语音模型和语言模型的实践方案,涵盖从文件预处理、多模态推理到结果融合的全流程,为Java开发者打开通往下一代多模态AI应用的大门。
444 41
|
5月前
|
自然语言处理 安全
Min-p采样:通过动态调整截断阈值让大模型文本生成兼顾创造力与逻辑性
大语言模型通过预测下一个词生成文本,采样策略决定其创造力与连贯性。Min-p采样根据模型置信度动态调整选择阈值,在高不确定性时扩大候选范围,低不确定性时聚焦高概率词,相较Top-k、Top-p等方法,更好平衡了多样性与质量,尤其在高温下仍保持输出稳定,提升生成文本的流畅性与创新性。
241 3
|
4月前
|
人工智能 自然语言处理 自动驾驶
超越文本:多模态大语言模型如何让AI“看世界
超越文本:多模态大语言模型如何让AI“看世界
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
88_多模态提示:图像与文本融合
在人工智能领域的快速发展中,多模态融合已成为突破单一模态限制、实现更全面智能理解的关键技术方向。人类理解世界的方式天然是多模态的——我们同时通过视觉、听觉、语言等多种感官获取信息并进行综合分析。例如,在餐厅点餐时,我们会同时处理菜单上的图片、服务员的介绍和菜品的文字描述,最终做出决策。这种自然的多模态信息整合能力,正是人工智能系统长期以来努力追求的目标。
|
9月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
2382 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
SQL 人工智能 关系型数据库
SQL玩转多模态AI,轻松搞定图片+文本混合搜索
本文介绍了一种通过原生SQL实现多模态智能检索的破局思路,基于PolarDB创新融合AI智能引擎,解决传统AI检索系统数据迁移冗余和工具链割裂的问题。方案优势包括低门槛AI集成、灵活适配多场景、全链路数据安全及按需付费免运维。文章详细描述了部署资源、应用配置及方案验证步骤,并提供清理资源指南以避免额外费用。适合希望快速构建智能搜索应用的开发者参考实践。
|
11月前
|
人工智能 缓存 Apache
Mistral Small 3.1:240亿参数多模态黑马!128k长文本+图像分析,推理速度150token/秒
Mistral Small 3.1 是 Mistral AI 开源的多模态人工智能模型,具备 240 亿参数,支持文本和图像处理,推理速度快,适合多种应用场景。
435 7
Mistral Small 3.1:240亿参数多模态黑马!128k长文本+图像分析,推理速度150token/秒
|
11月前
|
机器学习/深度学习 人工智能 缓存
SepLLM:开源大模型加速神器!400万Token长文本推理提速50%,告别OOM噩梦
SepLLM 是一个用于加速大语言模型的高效框架,通过压缩段落信息并消除冗余标记,显著提高了模型的推理速度和计算效率,适用于长文本处理和多场景部署。
495 7
SepLLM:开源大模型加速神器!400万Token长文本推理提速50%,告别OOM噩梦
|
10月前
|
人工智能 自然语言处理 图形学
多模态交互3D建模革命!Neural4D 2o:文本+图像一键生成高精度3D内容
Neural4D 2o是DreamTech推出的突破性3D大模型,通过文本、图像、3D和运动数据的联合训练,实现高精度3D生成与智能编辑,为创作者提供全新的多模态交互体验。
702 0
多模态交互3D建模革命!Neural4D 2o:文本+图像一键生成高精度3D内容
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出
Baichuan-Omni-1.5 是百川智能开源的全模态理解模型,支持文本、图像、音频和视频的多模态输入和输出,显著提升多模态交互体验。
962 22
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出