万人在线,一站式自动化运维 SysOM 3.0重磅发布!龙蜥社区系统运维 MeetUp 回顾来了

简介: 万人在线,一站式自动化运维 SysOM 3.0重磅发布!龙蜥社区系统运维 MeetUp 回顾来了

8 月 12 日,由龙蜥社区系统运维 SIG 主办,乘云数字协办的,主题为“观测,让运维更简单!”的系统运维 MeetUp 于杭州圆满结束。来自乘云数字、谐云科技、乐维、云杉网络、擎创科技、观测云、阿里云以及浙江大学等众多厂商及高校的 11 位专家和教授,分享了精彩主题演讲,带来了前沿技术见解。现场来自浪潮信息、神州数码、阿里云等企业超 50 位开源爱好者,就云场景下运维的核心痛点及解决方案展开讨论,大家围绕 Linux 应用和系统可观测、eBPF 跟踪以及诊断技术等打卡体验了龙蜥硬核运维技术,线上超万人观看并参与了互动。

(图/活动现场合影)


(图/龙蜥社区理事长马涛)


活动开场,龙蜥社区理事长马涛发表了开场致辞:“看到大家今天齐聚杭州,一起来交流讨论系统运维技术,我的第一感觉是三个’多‘。第一是现场的参与者众多。咱们现场有高校教授、云厂商、运维厂商及很多 Linux / eBPF 爱好者等。第二是现场分享的议题多,既有 eBPF 技术、也有一站式运维平台 SysOM 3.0 的发布,还有龙蜥社区和 Kindling 社区联合发布的北极星指标及可观测性技术的分享等。第三是我个人觉得龙蜥社区在创新、面向未来的思考工作做了很多。相信大家或多或少都有体感,在系统运维领域,过去更多靠个人/专家的能力去解决问题,没有形成一个标准。但随着云原生、eBPF、可观测、AI 等技术大规模兴起,我觉得对于系统运维领域是一个契机。龙蜥社区也已深刻的体会到存在的机会和挑战,希望能够结合社区的力量更好、更高效的去解决。本次活动后面也会有针对成立‘系统运维联盟’的讨论,大家一起探索通过‘系统运维联盟’的方式,以创新的形式来解决问题。最后,不论是通过系统运维 SIG 还是所有工程师的努力,最终希望在龙蜥社区能够形成一整套完整地、高效地运维方式,帮助企业去解决面临的运维难题。”


致辞结束后,正式开始技术分享环节,本次 MeetUp 有 9 大议题、11 位技术大咖就 Linux 和 eBPF 技术的魅力展开演讲。

(图/浙江大学软件学院副教授、博士生导师才振功)


浙江大学软件学院副教授、博士生导师才振功分享了《 Gartner 2023 可观测性魔力象限解读和启示》主题演讲。才振功围绕 Gartner 关于 APM 和可观测性魔力象限谈了谈他的一些想法。据 2023 年最新的可观测性魔力象限报告显示,可观测性已受到社会各界广泛关注,市场空间占比也很大,而入选魔力象限的企业综合考虑了“技术”和“非技术”类多项指标。接着,他详细介绍了 Leader 象限供应商的特点、Visionaries 象限供应商的前瞻性、Niche Players 象限解决了用户哪些痛点等。最后总结了可观测性的发展趋势。  

(图/谐云科技 CTO 苌程)


(图/龙蜥社区系统运维 SIG Owner 毛文安)


谐云科技 CTO 苌程、龙蜥社区系统运维 SIG Owner 毛文安联合分享了《龙蜥社区 & kindling社区联合发布:北极星指标体系构建》

苌程和毛文安共同分享了关于排障北极星指标理论的独到见解。尽管在传统的可观测性领域,涵盖了 tracing、metrics、logging 等要素,但依然存在一些无法观测到的盲区。这些盲区的存在使得我们在故障排除过程中常常感到困惑。由于 Linux 内核的复杂性,即使是专家们也常常受限于某一特定领域,例如网络、存储、CPU 调度等。因此,故障排查的挑战在于,虽然问题表面看起来可能出现在某一领域,但根本原因可能却隐藏在另一个领域。这意味着解决故障通常需要集结来自多个领域的专家,而这也导致了 1-5-10 等迅速恢复业务的问题难以解决和实施。为了解决这一问题,Kindling 社区与龙蜥社区合作,共同推出了排障北极星理论


北极星理论可以指导我们快速的进行问题定界,根据某个指标值,确定问题下一步的排查思路。龙蜥社区基于这套理论,也进行了一些启发性的实现,毛文安介绍了北极星指标的代码实现方法,并通过具体场景指出排查问题的方向,给出问题的根因结论,从理论到实践进一步诠释了北极星指标对排查问题的极大帮助。

(图/乘云数字 DataBuff  产品线架构师狂魔)


乘云数字 DataBuff  产品线架构师狂魔分享了《云观测场景下的 Trace 全量存储技术研究》主题演讲。狂魔在分享上提到,DataBuff 正在构建以“ Trace、Metric、Log、Topo、eBPF Flow” 观测五件套为数据原材料的一体化观测平台,Trace 是一体化观测的核心要素,是拓扑驱动现代 AIOps 分析的关键,有着不可替代的地位。当前,业界大多可观测性软件厂商无法解决“Trace 全量存储”的技术难题,大量丢弃客户的交易链数据是普遍现象,在安全合规、故障回溯、算力成本等方面均受到了巨大挑战。乘云数字专门开发了一款 “TraceX 调用链全量存储系统”,面向可观测分析场景、尤其适合大规模交易系统、云原生容器场景,帮助系统实现全量化存储调用链数据。TraceX 能够有效的降低 Tracing 数据的存储成本、提升分析效率,真正达到降本增效的目的。通过 TraceX 辅助一体化观测系统构建应用系统的空间地图,实现故障定位的按图索骥不丢痕,真正解决客户的业务问题。

(图/乐维创始人丁振兴)


乐维创始人丁振兴分享了《开源运维工具使用现状及思考》主题演讲。Metric 做为可观测性的入口,丁振兴结合开源产品的优缺点分析和现状,提出一种监控的最佳实践,衍生基于监控发现的 CMDB,探索 CMDB 融合APM、NPM、安全、日志、ITSM 等,实现立体保障业务的可观测性平台,实现业务的观测保障 。

(图/阿里云系统服务负责人冯富秋)


阿里云系统服务负责人冯富秋向大家分享了《SysOM 3.0 发布:基于应用视角的智能运维》主题演讲。

冯富秋从当前运维产品的现状出发,讨论了一些工具平台在问题结论的展现和处理上面临的一些挑战:不知其然,只知其然而不知其所以然,难知所以然;并且很多开源中间件的发展和 FaaS 的演进让问题离根因越来越远,只站在传统运维平台和 IaaS 提供商的视角,造成鸡同鸭讲的情况,此外,内核的复杂性导致问题解决难度居高不下,比如一个 pagecache 异常变多可能引发内存不足告警、内存访问时延高等问题,更糟的是,大家没有办法知道究竟在哪个时刻会引发问题。面对这些挑战,是不是需要换一个视角,从用户的角度去分析和解决这类问题?


首先,要从应用的视角自顶向下进行分析来降低应用的运维门槛。实现指标与应用表象的关联, 通过全链路根因追踪,得到应用调用情况和各个阶段的延时分布;基于内核深度剖析发挥内核的全视角优势,深度分析进程间行为关联和资源使用情况。


其次,要从集群的视角实现监控告警到诊断分析的智能一体化运维,通过集群风险告警和集群健康度深入分析,这样才能知其然又知其所以然。


最后,通过具体案例,特别介绍了 SysOM 3.0 基于应用的观测方案,从 Java 运行时火焰图热点和 Mysql 数据库慢查询异常事件进行深入分析,得出了客户能看得懂的根因和结论。同时,也重点介绍了 SysOM 集群、节点、容器三位一体监控方案,实现集群视角的资源健康度评估,对 CPU、内存、IO、网络等系统资源的深入监控和诊断分析,让诊断监控化,监控诊断联动,所见即所得。

(图/清华大学博士、云杉网络研发 VP 向阳)


清华大学博士、云杉网络研发 VP 向阳做了《使用 eBPF 帮助应用开发实现零侵扰的可观测性》主题分享。他从 DeepFlow 的实践经验出发,以业务运维、应用开发的视角分享了一系列典型实战案例。通过他的分享,我们更生动的了解到了 eBPF 作为一项非常底层的内核编程技术,是如何支撑银行分布式核心快速上云,如何让层层网关呵护下的 Serverless 应用快速实现全栈链路追踪,如何帮助 C++ 技术栈的游戏应用解决插桩难的观测痛点,如何为祖传代码遇到的降本增效难题提供解决方案,如何化解公有云服务商和租户之间的工单卡死难题,以及如何结合 Wasm 技术让新一代证券交易系统实现零侵扰的分布式追踪。

(图/擎创科技可观测产品总监何晶)


擎创科技可观测产品总监何晶分享了《云原生转型之路的多系统运维》。企业面向几百个转型中间态的系统,通过建设统一对象模型,对异源同域的数据进行解析丰富处理,实现多维数据自主关联。算法和机器学习为复杂的体系提供了动态问题感知和预测的能力。在问题发生后基于根因推荐、同源分析等措施快速故障定界并开始应急处置,保障业务的连续性是首要之责,数智化观测为排障和系统调优提供有效的决策能力。

(图/观测云系统工程师张文杰)


观测云系统工程师张文杰同大家分享了《eBPF 与网络可观测性研究》。eBPF 在网络可观测上具有安全灵活、实时追踪等优点,通过运行时加载 DataKit 探针能实现对网络流量的实时分析和统计;基于网络协议的分析,能够为链路系统提供系统侧的 Span 补充。最终在观测云统一可观测平台上展示出请求数、响应时间、错误率等关键指标。


在技术主题分享结束后,阿里云系统服务负责人冯富秋主持了主题为《云场景下运维的核心痛点及解决方案研讨》的圆桌讨论,来自清华大学博士、云杉网络研发 VP 向阳,谐云科技 CTO 苌程,乘云数字公司创始人度远,乐维创始人丁振兴,龙蜥社区系统运维 SIG Maintainer 张毅,观测云系统工程师张文杰,擎创科技可观测产品总监何晶,浙江大学城市学院教授李飞参加了讨论,嘉宾就运维的痛点、突破点和价值点三个方向的议题展开了热烈的讨论。


在圆桌讨论环节,各位嘉宾就议题展开了讨论。乘云数字公司创始人度远就大模型的议题展开了分享。他提到:乘云数字较早的发布商业化的 OpsGPT 引擎,是将大语言模型在 IT 运维领域的垂直应用落地。我们初步计划将 OpsGPT 打造成一位低成本、高效率的运维老专家。初期的探索中,我们的一点小小体会是,大模型作为人工智能领域的重大技术变革,将会对企业 IT 服务领域产生重大而深远的影响。但现阶段也不适合过早过度神话,无论是底层数据质量、算力支撑、指令级的专业知识、向量数据库逻辑等都是需要进一步演进和积累。这个领域需要有使命感的领军企业来带动,以大模型为抓手,大家以更开放的态度,共同协作,才能为用户提供更大的价值。希望 OpsGPT 在可观测领域能够发挥越来越大的作用,为我们的客户在实际生产环境中的根因定位、故障自愈等技术难题提供更多的能量。


针对国内是否有必要成立自己的运维联盟,大家众说纷纭,现场讨论氛围热烈。谐云科技 CTO 苌程表示,在国内,很多甲方公司通常会从自身的经验出发来理解故障。如果我们自身尚未遇到过相关故障,往往会认为这些问题可能与我们的系统无关。因此这种被动的心态导致,甲方一线人员一直感觉在救火。


此外,在技术领域,大家的共识并不一致。故障通常会通过表象呈现出来,比如无法访问。然而,故障的深层原因和导致它的因素可能多种多样。技术界缺乏一种共识机制,来使得甲方和乙方能够达成共识。作为甲方,需要了解可能会遇到的问题以及可能的原因,而作为乙方,他们需要明确应该提供什么样的技术服务。另外,技术在不断的向前演进,但不是每一个企业都有足够的技术实力、财力等去研究和推动,这就非常需要有一个组织快速的将先进成果进行转化到具体实践中,服务千行百业的客户。


运维联盟可以扛起这面旗帜,促使甲方和乙方先达成共识,推动技术进步。例如,在云原生环境中,到底可能会有哪些故障,这些故障的表现是什么。具体来说,可以基于复旦大学开源项目的经验,演进出一个关于不同场景故障的共识。欢迎所有感兴趣的人,无论是甲方还是乙方,抑或是高校,都来分享他们可能遇到过的故障案例。甲方收获了一个全网最全的故障知识库,理解了自己系统可能存在薄弱的地方,高校也可以通过这个平台获得一个实验环境,而不同的厂商可以合作构建一个技术生态。在联盟内部,每家厂商可以根据自身的专业领域分工,然后互相打通接口,共同为用户的生产环境提供支持和保障。


最后,感谢本次活动各位嘉宾的精彩演讲,也感谢龙蜥社区伙伴及乘云数字工作人员:毛文安、周絮、蔡佳丽、刘寅、金美琴、孙林林、张毅、尹斌斌、廖肇燕、李光水、程书意、赵航、刘海龙、邹涛、陈诗雁、刘馨蔚、张永德、阙建明、袁艳桃、夏敏琪 、度远、 张怀鹏、贾慧艳 (以上排名不分先后)等人的组织与配合,也特别感谢 Linux 中国、InfoQ、思否、51CTO、阅码场等媒体的支持,有各位的辛苦付出,使得本次系统运维 MeetUp 活动圆满结束。


课件、视频获取:本次活动视频回放及技术 PPT 已上传:

视频回放(或点击阅读原文直达):https://space.bilibili.com/1247819550

技术 PPT :关注龙蜥公众号【OpenAnolis 龙蜥】,回复“龙蜥课件”获取。

更多相关的活动内容将在这里或者龙蜥社区交流群剧透推送,记得持续关注龙蜥社区公众号,谨防走丢哦!


—— 完 ——

加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。

关于龙蜥

龙蜥社区是立足云计算打造面向国际的 Linux  服务器操作系统开源根社区及创新平台。龙蜥操作系统(Anolis OS)是龙蜥社区推出的 Linux 发行版,拥有三大核心能力:提效降本、更加稳定、更加安全。

目前,Anolis OS 23 已发布,全面支持智能计算,兼容主流 AI 框架,支持一键安装 nvidia GPU 驱动、CUDA 库等,完善适配 Intel、兆芯、鲲鹏、龙芯等芯片,并提供全栈国密支持。

加入我们,一起打造面向云时代的操作系统!

相关文章
|
2天前
|
人工智能 运维 架构师
开始报名,龙蜥社区系统运维联盟MeetUp暨iAutoBASE专题论坛来啦
12月27日,探讨车用基础软件技术及生态发展,欢迎报名。
开始报名,龙蜥社区系统运维联盟MeetUp暨iAutoBASE专题论坛来啦
|
17天前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
64 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
21天前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
21天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
52 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
1月前
|
缓存 运维 监控
【运维必备知识】Linux系统平均负载与top、uptime命令详解
系统平均负载是衡量Linux服务器性能的关键指标之一。通过使用 `top`和 `uptime`命令,可以实时监控系统的负载情况,帮助运维人员及时发现并解决潜在问题。理解这些工具的输出和意义是确保系统稳定运行的基础。希望本文对Linux系统平均负载及相关命令的详细解析能帮助您更好地进行系统运维和性能优化。
52 3
|
1月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
60 4
|
1月前
|
运维 监控 中间件
数据中心运维监控系统产品价值与优势
华汇数据运维监控系统面向IT基础架构及IT支撑平台的监控和运维管理,包含监测、分析、展现和告警。监控范围涵盖了网络设备、主机系统、数据库、中间件和应用软件等。
58 4
|
1月前
|
运维 监控 网络协议
自动化运维的魔法——打造高效、可靠的系统
【10月更文挑战第32天】在数字化时代的浪潮下,运维不再是简单的硬件维护和故障排除。它已经演变成一场关乎效率、稳定性和创新的技术革命。自动化运维,作为这场革命的核心,正引领着企业走向更加智能和高效的未来。本文将带你探索自动化运维的世界,揭示其背后的原理和实践,让你领略到自动化带来的无限可能。
28 0
|
2月前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进
本文探讨了如何通过自动化和智能化手段,提升IT运维效率与质量。首先介绍了自动化在简化操作、减少错误中的作用;然后阐述了智能化技术如AI在预测故障、优化资源中的应用;最后讨论了如何构建一个既自动化又智能的运维体系,以实现高效、稳定和安全的IT环境。
75 4
下一篇
DataWorks