官方认证来袭!云上数据安全治理最佳实践

本文涉及的产品
Web应用防火墙 3.0,每月20元额度 3个月
云安全中心 防病毒版,最高20核 3个月
云安全基线管理CSPM免费试用,1000次1年
简介: 可落地执行的解决方案

近日,中国信息通信研究院安全所开展了“数据安全产品能力验证计划”测评,阿里云成为首家通过数据分类分级进阶级认证的云厂商。至此,阿里云数据安全中心已经累计通过数据脱敏、数据库审计、数据分类分级等多项能力的官方测评。
1.png
在信息数字化时代里,黑客的攻击越来越组织化、目的化、经济化,直指企业核心资产:对数据的盗取、加密和勒索。根据IBM调研显示,企业数据泄漏防护成本逐年增加,2022年已经达到435万美金,巨大经济支出的背后是依旧千疮百孔的防御系统。

数据,作为业务的核心、组成与结果,在人体中就像是血液一般的存在,当我们试图去厘清其脉络时,却发现它无处不在,难以衡量。自2021年《数据安全法》 颁布执行以来,相关的企业数据安全解决方案层出不穷,大浪淘沙,在热度逐渐回归的当下,企业需要的是可落地执行的方案。

阿里云数据安全中心,自2018年以来,一直深耕于云环境下的数据安全研究。不同于空泛的“保护”,以数据为中心,风险为导向,建设基于数据域的分类分级防护体系,落地从感知、态势管理、治理到防护的数据安全治理,才是阿里云数据安全的探索方向。
2.png

(阿里云云上数据治理全流程)

以资产为核心的数据感知

感知,是一个拟人化的词语,人类靠着视觉、听觉、触觉、味觉等能力来时刻感受,知晓自身所处的环境与现状。对于企业而言,知道数据资产有哪些,存放在什么样的位置,哪些是敏感数据,哪些是可公开数据,并依据此绘制数据地图,是数据安全治理的第一步,但机器并非人体,能让其协调的联动互通,整体感知,隐藏着诸多难点。

01.数据资产的全面性

在线下,数据往往呈现孤岛状态,彼此之间难以统管统查,割裂的接入不仅让全局混淆不清,也是个缓慢且复杂的过程,需要一个一个找DBA收集连接凭据,并单独录入。而云平台天然的统一底座与API接口,让数据接入的广度和效率都极大提升。阿里云数据安全中心现已接入OSS、RDS、MaxCompute、MongoDB等8类云上主流存储产品,并实现统一扫描,集中展示,有效发现影子数据。同时,云底座的耦合性,可实现各云产品的一键获取+一键授权,对于在云上拥有数百上千数据库实例的客户,将会极大节省运维工作量。
图1.jpg
02.数据资产识别的准确性

如果说数据的接入量级决定着资产地图的全面性,那么数据识别和分类分级的准确度,则决定着地图是否真的可用。
图2.jpg
识别准确性的提升并不容易,首先在技术上,需要持续迭代特征和模型、以及对应的数据校验规则。举个例子,对于“工资单”这个敏感性极高的数据类型,它是人名+数字+年月等等的集合,在不同的公司/行业里的叫法和格式也不一样,相对应的特征越多,识别也就越准确。此外,通过组合特征的判定,例如交叉判定身份证、员工ID、员工入职年份等信息,能更细粒度的进行数据筛选。

阿里云数据安全中心在覆盖云上多数据源的情况下:

  • 支持200种文件类型、500种以上的敏感数据识别能力

  • 对于新型数据特征,可实现自动实时添加,持续提升模型丰富性

  • 在算法上引入多类数据校验机制:身份验证码、基于Luhn算法的银行卡校验规则、IMEI验证码......识别的当下即可判断其正误,并非仅依赖于数据格式。

但通用的识别模型再准确,也难以覆盖行业的特殊性,正所谓“隔行如隔山”,数据身上也有强烈的行业烙印,例如“行驶轨迹”“车辆工况”“车辆基本属性”等汽车行业专属敏感词,在通用识别模型中很可能会被直接忽略。阿里云数据安全中心持续和各行头部客户共创,并依据行业合规监管标准,提供给客户“1+N”可选识别模板,覆盖个人信息(GB/T 35273)、车联网、金融、能源、互联网等多类型,并通过法律条文、行业规范、企业制度等丰富的上下文信息,对数据敏感度进行等级划分,实现以资产视角为中心的重要度排序。

同时阿里云数据安全中心也支持客户自定义分级标准,为数据风险处理优先级提供细粒度判断依据。
互联网.png
车力.jpg
电力.jpg
金融.jpg
03.数据的量变到质变

拿当下最火的LMM大模型举例,2018年GPT诞生之际,其预训练数据量约5GB,参数量大约1.17亿,而到2020年,GPT迭代到第三代,其商业化成果也正是一举引爆市场的Chat-GPT,训练数据量级已达到40GB,参数量约15亿,而到GPT-4,据外媒SemiAnalysis揭秘,训练参数量级达到1.8万亿,是最初训练量级的15384倍。

对于数据识别模型,特别是非结构化数据,量变不一定会产生质变,但准确度提升一定离不开大规模的数据识别量。阿里云数据安全中心,自上线以来,平均每月自动化分类分级4.5亿份文档,总数量已达54亿+。

  • 针对结构化数据:新增的识别特征会自动化更新,保证模型识别的准确性;

  • 针对非结构化数据:在模型之外,辅助以OCR、NLP等技术,并通过关联比对,提升准确度。

以风险为核心的态势管理

通过数据识别和分类分级,企业以资产为核心,绘制云上数据大图,并在大图的指导下,对数据面临的风险做统一管理。

阿里云数据安全中心于今年推出DSPM(数据安全态势管理)能力,以GB/T 37988-2019《信息安全技术数据安全能力成熟度模型》为依据,定义了8种常见的数据风险场景,150+检查项,形成以风险为核心的运维态势管理。
1.png
不同于线下的各自为政,云上原生化的优势,使得多产品联动、多策略可统一拉齐。阿里云数据安全中心通过获得授权API接口,将8类不同数据产品的监控统一,并根据阿里云数据安全最佳实践形成的检测基线,对各类数据资产实现统一的扫描检测,包括身份权限、敏感数据、访问控制、数据备份、数据传输加密等多条检测项,用户在单一的控制台即可实现全域数据态势监控,极大降低企业运维复杂度。

以加密为基础的数据治理

目前对于数据风险的核心治理手段有两类:加密和权限控制。

对数据的治理并非单点单次,而是在持续性数据识别和风险识别的基础上,综合判断资产重要性与风险危害性,及时进行风险治理,防止潜在的数据泄漏。阿里云为云上企业提供从底层的身份权限管控、KMS密钥管理、数据容灾备份,到上层的业务数据脱敏、SSL证书等系列安全能力,协助客户全面收敛安全风险。
image.png
image.png

以事件为核心的动态监控

全国著名咨询机构Gartner曾在报告中写到,到2023年,至少99%的云安全故障将是客户的错。以上三个流程核心聚焦于事前的安全加固,旨在最大化收敛「99%」的由配置错误、影子资产、权限错误等问题带来的风险。但从攻击者视角出发,无论事前的防护有多么牢固,仍有「1%」的概率直取黄龙,在事中和事后及时的告警也必不可少。

阿里云数据安全中心提供给客户全面的数据审计能力,通过云上广泛的数据产品接入量(包含关系型数据库、非关系型数据库、大数据、非结构化数据库、自建数据库等)以及基于机器学习的动态UEBA分析引擎,辅助以各类规则,综合研判用户行为,及时阻断风险。

近期,在阿里云内部蓝军演练中,阿里云数据安全中心通过审计记录分析、行为基线对比、UEBA动态风险分研判等操作,成功发现某近两月无访问和下载行为的某OSS下Bucket数据集,突然出现访问及下载行为,通过对IP地址、访问时间、访问地点、行为等多重信息的交叉比对,成功发现并阻止了攻击队的数据入侵行为。
图图1.png

数据安全治理


图图2.png

敏感数据分布与使用管理


图图3.png

数据安全态势感知

阿里云数据安全中心通过数据资产识别、态势感知、风险治理以及事件监控四大核心思路,构建了可落地的安全治理闭环流程,覆盖数据安全治理、敏感数据使用与防泄漏、数据安全态势感知、数据统一安全管控等多个场景下的安全防护,在汽车、金融、能源、互联网等多个行业均有落地,保护广大企业的云上核心资产——数据。

阿里云数据安全中心现已开放免费试用,点击【阅读原文】即可了解更多。
链接:https://www.aliyun.com/product/sddp?utm_content=g_1000378702

相关文章
|
17天前
|
存储 数据采集 监控
云上数据安全保护:敏感日志扫描与脱敏实践详解
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
云上数据安全保护:敏感日志扫描与脱敏实践详解
|
2月前
|
存储 数据采集 监控
云上数据安全保护:敏感日志扫描与脱敏实践详解
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
|
5月前
|
监控 安全 数据安全/隐私保护
确保数据安全与隐私保护的数据治理最佳实践
【8月更文第13天】随着数据成为企业最重要的资产之一,数据安全和隐私保护变得至关重要。本文将探讨数据治理中的一些最佳实践,并提供具体的代码示例来说明如何实施这些策略。
1070 4
|
8月前
|
监控 安全 数据处理
《数据治理简易速速上手小册》第4章 数据安全与合规性(2024 最新版)
《数据治理简易速速上手小册》第4章 数据安全与合规性(2024 最新版)
133 0
|
存储 安全
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
161 0
|
运维 分布式计算 监控
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
514 0
|
数据采集 数据安全/隐私保护 监控
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——5. 资产治理:高价值数据,助力企业高质量发展
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——5. 资产治理:高价值数据,助力企业高质量发展
390 0
|
监控 安全 大数据
数据治理专业认证CDMP学习笔记(思维导图与知识点)- 第七章数据安全篇
数据治理专业认证CDMP学习笔记(思维导图与知识点)- 第七章数据安全篇
158 0
|
安全 大数据 数据安全/隐私保护
数据安全治理实践指南2.0
数据安全治理实践指南2.0
233 0
|
8月前
|
存储 数据采集 安全
瓴羊Dataphin数据安全能力再升级,内置分类分级模板、上线隐私计算模块
瓴羊Dataphin数据安全能力再升级,内置分类分级模板、上线隐私计算模块
221 0

热门文章

最新文章