为什么mysql的count()方法这么慢?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 为什么mysql的count()方法这么慢?

兄弟们。

浅浅的炫个富吧。

说出来你们可能不信。

手机你们有吗?我有。

短信,知道吧?一条一毛钱,我天天发

你敢想吗?

所以说,年轻人,有钱是真的好。

今天,我们就以短信为话题聊起。

短信,它又叫SMS。


比如说,你有一张短信表(sms),里面放了各种需要发送的短信信息。

sms建表sql

sms表

需要注意的是state字段,为0的时候说明这时候短信还未发送。

此时还会有一个异步线程不断的捞起未发送(state=0)的短信数据,执行发短信操作,发送成功之后state字段会被置为1(已发送)。也就是说未发送的数据会不断变少

异步线程发送短信


假设由于某些原因,你现在需要做一些监控,比如监控的内容是,你的sms数据表里还有没有state=0(未发送)的短信,方便判断一下堆积的未发送短信大概在什么样的一个量级。

为了获取满足某些条件的行数是多少,我们一般会使用count()方法

这时候为了获取未发送的短信数据,我们很自然就想到了使用下面的sql语句进行查询。

select count(*) from sms where state = 0;

然后再把获得数据作为打点发给监控服务。


当数据表小的时候,这是没问题的,但当数据量大的时候,比如未发送的短信到了百万量级的时候,你就会发现,上面的sql查询时间会变得很长,最后timeout报错,查不出结果了


为什么?


我们先从count()方法的原理聊起。


count()的原理

count()方法的目的是计算当前sql语句查询得到的非NULL的行数

我们知道mysql是分为server层和存储引擎层的

Mysql架构

存储引擎层里可以选择各种引擎进行存储,最常见的是innodb、myisam。具体使用哪个存储引擎,可以通过建表sql里的ENGINE字段进行指定。比如这篇文章开头的建表sql里用了ENGINE=InnoDB,那这张表用的就是innodb引擎。

虽然在server层都叫count()方法,但在不同的存储引擎下,它们的实现方式是有区别的。

比如同样是读全表数据  select count(*) from sms;语句。

使用 myisam引擎的数据表里有个记录当前表里有几行数据的字段,直接读这个字段返回就好了,因此速度快得飞起。

而使用innodb引擎的数据表,则会选择体积最小的索引树,然后通过遍历叶子节点的个数挨个加起来,这样也能得到全表数据。

因此回到文章开头的问题里,当数据表行数变大后,单次count就需要扫描大量的数据,因此很可能就会出现超时报错。


那么问题就来了。


为什么innodb不能像myisam那样实现count()方法

myisam和innodb这两个引擎,有几个比较明显的区别,这个是八股文常考了。

其中最大的区别在于myisam不支持事务,而innodb支持事务。

而事务,有四层隔离级别,其中默认隔离级别就是可重复读隔离级别(RR)

四层隔离级别

innodb引擎通过MVCC实现了可重复隔离级别,事务开启后,多次执行同样的select快照读,要能读到同样的数据。

于是我们看个例子。

为什么innodb不单独记录表行数

对于两个事务A和B,一开始sms表假设就2条数据,那事务A一开始确实是读到2条数据。事务B在这期间插入了1条数据,按道理数据库其实有3条数据了,但由于可重复读的隔离级别,事务A依然还是只能读到2条数据。

因此由于事务隔离级别的存在,不同的事务在同一时间下,看到的表内数据行数是不一致的,因此innodb,没办法,也没必要像myisam那样单纯的加个count字段信息在数据表上。

那如果不可避免要使用count(),有没有办法让它快一点?


各种count()方法的原理

count()的括号里,可以放各种奇奇怪怪的东西,想必大家应该看过,比如放个星号*,放个1,放个索引列啥的。

我们来分析下他们的执行流程。

count方法的大原则是server层会从innodb存储引擎里读来一行行数据,并且只累计非null的值。但这个过程,根据count()方法括号内的传参,有略有不同。


count(*)

server层拿到innodb返回的行数据,不对里面的行数据做任何解析和判断,默认取出的值肯定都不是null,直接行数+1。


count(1)

server层拿到innodb返回的行数据,每行放个1进去,默认不可能为null,直接行数+1.


count(某个列字段)

由于指明了要count某个字段,innodb在取数据的时候,会把这个字段解析出来返回给server层,所以会比count(1)和count(*)多了个解析字段出来的流程。

  • 如果这个列字段是主键id,主键是不可能为null的,所以server层也不用判断是否为null,innodb每返回一行,行数结果就+1.
  • 如果这个列是普通索引字段,innodb一般会走普通索引,每返回一行数据,server层就会判断这个字段是否为null,不是null的情况下+1。当然如果建表sql里字段定义为not null的话,那就不用做这一步判断直接+1。
  • 如果这个列没有加过索引,那innodb可能会全表扫描,返回的每一行数据,server层都会判断这个字段是否为null,不是null的情况下+1。同上面的情况一样,字段加了not null也就省下这一步判断了。

理解了原理后我们大概可以知道他们的性能排序是

count(*) ≈ count(1) > count(主键id) > count(普通索引列) > count(未加索引列)

所以说count(*),已经是最快的了。


知道真相的我眼泪掉下来。

那有没有其他更好的办法?


允许粗略估计行数的场景

我们回过头来细品下文章开头的需求,我们只是希望知道数据库里还有多少短信是堆积在那没发的,具体是1k还是2k其实都是差不多量级,等到了百万以上,具体数值已经不重要了,我们知道它现在堆积得很离谱,就够了。因此这个场景,其实是允许使用比较粗略的估计的。

那怎么样才能获得粗略的数值呢?

还记得我们平时为了查看sql执行计划用的explain命令不。

其中有个rows,会用来估计接下来执行这条sql需要扫描和检查多少行。它是通过采样的方式计算出来的,虽然会有一定的偏差,但它能反映一定的数量级。

explain里的rows

有些语言的orm里可能没有专门的explain语法,但是肯定有执行raw sql的功能,你可以把explain语句当做raw sql传入,从返回的结果里将rows那一列读出来使用。

一般情况下,explain的sql如果能走索引,那会比不走索引的情况更准 。单个字段的索引会比多个字段组成的复合索引要准。索引区分度越高,rows的值也会越准。

这种情况几乎满足大部分的监控场景。但总有一些场景,它要求必须得到精确的行数,这种情况该怎么办呢?


必须精确估计行数的场景

这种场景就比较头疼了,但也不是不能做。

我们可以单独拉一张新的数据库表,只为保存各种场景下的count。

CREATE TABLE `count_table` (
  `id` int NOT NULL AUTO_INCREMENT COMMENT '主键',
  `cnt_what` char(20) NOT NULL DEFAULT '' COMMENT '各种需要计算的指标',
  `cnt` tinyint NOT NULL COMMENT 'cnt指标值',
  PRIMARY KEY (`id`),
  KEY `idx_cnt_what` (`cnt_what`)
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4;

count_table表保存各种场景下的count

当需要获取某个场景下的cout值时,可以使用下面的sql进行直接读取,快得飞起

select cnt from count_table where cnt_what = "未发送的短信数量";


那这些count的结果值从哪来呢?

这里分成两种情况。


实时性要求较高的场景

如果你对这个cnt计算结果的实时性要求很高,那你需要将更新cnt的sql加入到对应变更行数的事务中

比如我们有两个事务A和B,分别是增加未发送短信和减少未发送短信。

将更改表行数的操作放入到事务里

这样做的好处是事务内的cnt行数依然符合隔离级别,事务回滚的时候,cnt的值也会跟着回滚。

坏处也比较明显,多个线程对同一个cnt进行写操作,会触发悲观锁,多个线程之间需要互相等待。对于高频写的场景,性能会有折损。


实时性没那么高的场景

如果实时性要求不高的话,比如可以一天一次,那你可以通过全表扫描后做计算。

举个例子,比如上面的短信表,可以按id排序,每次取出1w条数据,记下这一批里最大的id,然后下次从最大id开始再拿1w条数据出来,不断循环。

对于未发送的短信,就只需要在捞出的那1w条数据里,筛选出state=0的条数。

batch分批获取短信表

当然如果有条件,这种场景最好的方式还是消费binlog将数据导入到hive里,然后在hive里做查询,不少公司也已经有现成的组件可以做这种事情,不用自己写脚本,岂不美哉。

mysql同步hive


总结

  • mysql用count方法查全表数据,在不同的存储引擎里实现不同,myisam有专门字段记录全表的行数,直接读这个字段就好了。而innodb则需要一行行去算。
  • 性能方面 count(*) ≈ count(1) > count(主键id) > count(普通索引列) > count(未加索引列),但哪怕是性能最好的count(*),由于实现上就需要一行行去算,所以数据量大的时候就是不给力。
  • 如果确实需要获取行数,且可以接受不那么精确的行数(只需要判断大概的量级)的话,那可以用explain里的rows,这可以满足大部分的监控场景,实现简单。
  • 如果要求行数准确,可以建个新表,里面专门放表行数的信息。
  • 如果对实时性要求比较高的话,可以将更新行数的sql放入到对应事务里,这样既能满足事务隔离性,还能快速读取到行数信息。
  • 如果对实时性要求不高,接受一小时或者一天的更新频率,那既可以自己写脚本遍历全表后更新行数信息。也可以将通过监听binlog将数据导入hive,需要数据时直接通过hive计算得出。


参考资料

《丁奇mysql45讲》


最后

兄弟们,最近有点没出息,沉迷在刘亦菲的新剧里,都快忘了写文这件事了。

按照惯例,我应该在这里唯唯诺诺的求大家叫我两声靓仔的。

但今天,我感觉我不配。

所以先这样。


但右下角的点赞和再看还是可以走一波的。

我是小白,我们下期见。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
3月前
|
存储 关系型数据库 MySQL
环比、环比增长率、同比、同比增长率 ,占比,Mysql 8.0 实例(最简单的方法之一)(sample database classicmodels _No.2 )
环比、环比增长率、同比、同比增长率 ,占比,Mysql 8.0 实例(最简单的方法之一)(sample database classicmodels _No.2 )
164 1
|
3月前
|
存储 关系型数据库 MySQL
提高MySQL查询性能的方法有很多
提高MySQL查询性能的方法有很多
258 7
|
16天前
|
SQL 存储 关系型数据库
MySQL/SqlServer跨服务器增删改查(CRUD)的一种方法
通过上述方法,MySQL和SQL Server均能够实现跨服务器的增删改查操作。MySQL通过联邦存储引擎提供了直接的跨服务器表访问,而SQL Server通过链接服务器和分布式查询实现了灵活的跨服务器数据操作。这些技术为分布式数据库管理提供了强大的支持,能够满足复杂的数据操作需求。
60 12
|
19天前
|
存储 缓存 关系型数据库
MySQL的count()方法慢
MySQL的 `COUNT()`方法在处理大数据量时可能会变慢,主要原因包括数据量大、缺乏合适的索引、InnoDB引擎的设计以及复杂的查询条件。通过创建合适的索引、使用覆盖索引、缓存机制、分区表和预计算等优化方案,可以显著提高 `COUNT()`方法的执行效率,确保数据库查询性能的提升。
533 12
|
29天前
|
缓存 NoSQL 关系型数据库
MySQL战记:Count( *)实现之谜与计数策略的选择
本文深入探讨了MySQL中`count(*)`的不同实现方式,特别是MyISAM和InnoDB引擎的区别,以及各种计数方法的性能比较。同时,文章分析了使用缓存系统(如Redis)与数据库保存计数的优劣,并强调了在高并发场景下保持数据一致性的挑战。
MySQL战记:Count( *)实现之谜与计数策略的选择
|
2月前
|
SQL 关系型数据库 MySQL
MySQL性能探究:count(*)与count(1)的性能对决
在MySQL数据库的性能优化中,对查询语句的细微差别有着深入的理解是非常重要的。`count(*)`和`count(1)`是两种常用的聚合函数,用于计算行数。在面试中,面试官经常会问到这两种函数的性能差异。本文将探讨`count(*)`与`count(1)`的性能对比,并整理十道经典的MySQL面试题,帮助你在面试中游刃有余。
104 3
|
2月前
|
关系型数据库 MySQL
Mysql 中日期比较大小的方法有哪些?
在 MySQL 中,可以通过多种方法比较日期的大小,包括使用比较运算符、NOW() 函数、DATEDIFF 函数和 DATE 函数。这些方法可以帮助你筛选出特定日期范围内的记录,确保日期格式一致以避免错误。
|
2月前
|
关系型数据库 MySQL 索引
MySQL的group by与count(), *字段使用问题
正确使用 `GROUP BY`和 `COUNT()`函数是进行数据聚合查询的基础。通过理解它们的用法和常见问题,可以有效避免查询错误和性能问题。无论是在单列分组、多列分组还是结合其他聚合函数的场景中,掌握这些技巧和注意事项都能大大提升数据查询和分析的效率。
240 0
|
4月前
|
关系型数据库 MySQL 数据库
Python MySQL查询返回字典类型数据的方法
通过使用 `mysql-connector-python`库并选择 `MySQLCursorDict`作为游标类型,您可以轻松地将MySQL查询结果以字典类型返回。这种方式提高了代码的可读性,使得数据操作更加直观和方便。上述步骤和示例代码展示了如何实现这一功能,希望对您的项目开发有所帮助。
187 4
|
4月前
|
SQL 关系型数据库 MySQL
创建包含MySQL和SQLServer数据库所有字段类型的表的方法
创建一个既包含MySQL又包含SQL Server所有字段类型的表是一个复杂的任务,需要仔细地比较和转换数据类型。通过上述方法,可以在两个数据库系统之间建立起相互兼容的数据结构,为数据迁移和同步提供便利。这一过程不仅要考虑数据类型的直接对应,还要注意特定数据类型在不同系统中的表现差异,确保数据的一致性和完整性。
47 4