【ELM分类】基于海鸥算法优化核极限学习机SOA-KELM实现数据分类附matlab代码

简介: 【ELM分类】基于海鸥算法优化核极限学习机SOA-KELM实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,核极限学习机(Kernel Extreme Learning Machine,简称KELM)是一种非常有效的分类算法。它通过随机生成的隐含层神经元的权重和偏置,将输入数据映射到高维特征空间,并使用最小二乘法进行线性分类。然而,传统的KELM算法在处理大规模数据集时会面临一些挑战,例如计算复杂度高和内存消耗大等问题。

为了解决这些问题,研究人员提出了一种基于海鸥算法的优化方法,称为SOA-KELM。海鸥算法是一种模拟鸟群觅食行为的优化算法,它通过模拟鸟群的搜索过程来寻找最优解。在SOA-KELM中,海鸥算法被用于优化KELM的隐含层权重和偏置,以提高分类性能。

SOA-KELM的优化过程可以分为以下几个步骤:

  1. 数据预处理:首先,需要对输入数据进行预处理,例如特征选择、特征缩放等。这可以帮助提取有用的信息,并减少计算复杂度。
  2. 隐含层权重和偏置初始化:随机生成隐含层神经元的权重和偏置,这些参数将用于将输入数据映射到高维特征空间。
  3. 海鸥算法优化:使用海鸥算法来优化隐含层权重和偏置。海鸥算法模拟了鸟群的觅食行为,通过搜索最优解来优化KELM的性能。
  4. 最小二乘法分类:使用最小二乘法对优化后的KELM进行线性分类。最小二乘法是一种常用的回归分析方法,可以通过最小化误差平方和来拟合数据。

通过以上步骤,SOA-KELM能够更好地处理大规模数据集,并提高分类性能。相比传统的KELM算法,它具有以下优势:

  1. 计算效率高:SOA-KELM使用海鸥算法来优化隐含层权重和偏置,减少了计算复杂度,提高了算法的效率。
  2. 内存消耗小:SOA-KELM通过随机生成的隐含层神经元来映射输入数据,避免了存储大量权重和偏置的问题,从而减少了内存消耗。
  3. 分类性能优越:通过海鸥算法的优化,SOA-KELM能够更准确地进行数据分类,提高了分类性能。

总之,基于海鸥算法优化的核极限学习机SOA-KELM是一种非常有效的数据分类算法。它通过海鸥算法的优化,能够更好地处理大规模数据集,并提高分类性能。未来,我们可以进一步研究和应用SOA-KELM算法,以解决更复杂的分类问题。

核心代码

%%% Designed and Developed by Dr. Gaurav Dhiman (http://dhimangaurav.com/) %%%function Pos=init(SearchAgents,dimension,upperbound,lowerbound)Boundary= size(upperbound,2); if Boundary==1    Pos=rand(SearchAgents,dimension).*(upperbound-lowerbound)+lowerbound;endif Boundary>1    for i=1:dimension        ub_i=upperbound(i);        lb_i=lowerbound(i);        Pos(:,i)=rand(SearchAgents,1).*(ub_i-lb_i)+lb_i;    endend

⛄ 运行结果

⛄ 参考文献

[1] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.

[2] 耿银凤.基于极限学习机的脑卒中TCD数据分类研究[D].太原理工大学[2023-08-28].

[3] 刘新建,孙中华.狮群优化核极限学习机的分类算法[J].电子技术应用, 2022(002):048.

[4] 杜帮俊.基于改进粒子群和极限学习机的基因数据分类研究[D].中国计量大学,2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计
相关文章
|
2天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
4天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章