【大数据环境准备】(十二)Hbase安装

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Hbase安装

1、解压

[centos@hadoop10 data]$ tar -zxvf hbase-1.3.1-bin.tar.gz -C /data/module/
[centos@hadoop10 module]$ mv hbase-1.3.1/ ./hbase

2、环境变量设置

[root@hadoop10 module]# vim /etc/profile.d/my_env.sh
#HBASE_HOME
export HBASE_HOME=/data/module/hbase
export PATH=$PATH:$HBASE_HOME/bin

3、HBase的配置文件

1、hbase-env.sh 修改内容
export HBASE_MANAGES_ZK=false
2、hbase-site.xml 修改内容
<property>
        <name>hbase.rootdir</name>
        <value>hdfs://hadoop10:8020/hbase</value>
    </property>

    <property>
        <name>hbase.cluster.distributed</name>
        <value>true</value>
    </property>

    <property>
        <name>hbase.zookeeper.quorum</name>
        <value>hadoop10,hadoop11,hadoop12</value>
    </property>
3、regionservers:
hadoop10
hadoop11
hadoop12

4、同步

[centos@hadoop10 conf]$ /data/xsync /data/module/hbase/

5、启动服务

[centos@hadoop10 bin]$ ./hbase-daemon.sh start master
[centos@hadoop10 bin]$ ./hbase-daemon.sh start regionserver

提示:如果集群之间的节点时间不同步,会导致regionserver无法启动,抛出ClockOutOfSyncException异常。

a、同步时间服务
b、属性:hbase.master.maxclockskew设置更大的值


hbase.master.maxclockskew
180000
Time difference of regionserver from master

群启

[centos@hadoop10 bin]$ ./start-hbase.sh

6、查看hbase页面

http://192.168.31.10:16010

高可用(可选)

在HBase中HMaster负责监控HRegionServer的生命周期,均衡RegionServer的负载,如果HMaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以HBase支持对HMaster的高可用配置。

1.关闭HBase集群(如果没有开启则跳过此步)

[centos@hadoop10 hbase]$ bin/stop-hbase.sh

2.在conf目录下创建backup-masters文件

[centos@hadoop10 hbase]$ touch conf/backup-masters

3.在backup-masters文件中配置高可用HMaster节点

[centos@hadoop10 hbase]$ echo hadoop103 > conf/backup-masters

4.将整个conf目录scp到其他节点

[centos@hadoop10 hbase]$ scp -r conf/ hadoop103:/opt/module/hbase/

[centos@hadoop10 hbase]$ scp -r conf/ hadoop104:/opt/module/hbase/

5.打开页面测试查看

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
SQL 机器学习/深度学习 分布式计算
大数据-81 Spark 安装配置环境 集群环境配置 超详细 三台云服务器
大数据-81 Spark 安装配置环境 集群环境配置 超详细 三台云服务器
89 1
|
4月前
|
Java 大数据 分布式数据库
Spring Boot 与 HBase 的完美融合:探索高效大数据应用开发的新途径
【8月更文挑战第29天】Spring Boot是一款广受好评的微服务框架,以其便捷的开发体验著称。HBase则是一个高性能的大数据分布式数据库系统。结合两者,可极大简化HBase应用开发。本文将对比传统方式与Spring Boot集成HBase的区别,展示如何在Spring Boot中优雅实现HBase功能,并提供示例代码。从依赖管理、连接配置、表操作到数据访问,Spring Boot均能显著减少工作量,提升代码可读性和可维护性,使开发者更专注业务逻辑。
290 1
|
1月前
|
存储 大数据 数据处理
大数据环境下的性能优化策略
大数据环境下的性能优化策略
53 2
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
81 1
|
3月前
|
存储 分布式计算 分布式数据库
深入理解Apache HBase:构建大数据时代的基石
在大数据时代,数据的存储和管理成为了企业面临的一大挑战。随着数据量的急剧增长和数据结构的多样化,传统的关系型数据库(如RDBMS)逐渐显现出局限性。
552 12
|
4月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
234 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
4月前
|
分布式计算 大数据 分布式数据库
"揭秘HBase MapReduce高效数据处理秘诀:四步实战攻略,让你轻松玩转大数据分析!"
【8月更文挑战第17天】大数据时代,HBase以高性能、可扩展性成为关键的数据存储解决方案。结合MapReduce分布式计算框架,能高效处理HBase中的大规模数据。本文通过实例展示如何配置HBase集群、编写Map和Reduce函数,以及运行MapReduce作业来计算HBase某列的平均值。此过程不仅限于简单的统计分析,还可扩展至更复杂的数据处理任务,为企业提供强有力的大数据技术支持。
84 1
|
5月前
|
JSON 分布式计算 大数据
MaxCompute操作报错合集之连接环境时,出现报错:TypeError: access_id and secret_access_key,该怎么解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
5月前
|
存储 NoSQL 大数据
大数据存储:HBase与Cassandra的对比
【7月更文挑战第16天】HBase和Cassandra作为两种流行的分布式NoSQL数据库,在数据模型、一致性模型、数据分布、查询语言和性能等方面各有千秋。HBase适用于需要强一致性和与Hadoop生态系统集成的场景,如大规模数据处理和分析。而Cassandra则更适合需要高可用性和灵活查询能力的场景,如分布式计算、云计算和大数据应用等。在实际应用中,选择哪种数据库取决于具体的需求和场景。希望本文的对比分析能够帮助读者更好地理解这两种数据库,并做出明智的选择。
|
5月前
|
存储 Java 分布式数据库
使用Spring Boot和HBase实现大数据存储
使用Spring Boot和HBase实现大数据存储

热门文章

最新文章