多元分类预测 | Matlab天鹰算法优化深度极限学习机(AO-DELM)分类预测

简介: 多元分类预测 | Matlab天鹰算法优化深度极限学习机(AO-DELM)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着深度学习的快速发展,数据分类成为了一个重要的研究领域。为了提高分类的准确性和效率,研究人员一直在努力改进现有的分类算法。本文将讨论基于天鹰算法改进深度学习极限学习机AO-DELM实现数据分类的方法。

极限学习机(ELM)是一种快速且简单的分类算法,它通过随机初始化输入层与隐藏层之间的连接权重,然后通过最小二乘法来计算输出层与隐藏层之间的权重。然而,传统的ELM算法在处理大规模数据集时会遇到一些问题,例如计算复杂度高和泛化能力不足。

为了解决这些问题,研究人员引入了天鹰算法来改进ELM算法。天鹰算法是一种基于自然界中鹰的捕食行为的优化算法,它通过模拟鹰的搜索策略来优化ELM算法中的权重。通过引入天鹰算法,研究人员能够提高ELM算法的收敛速度和泛化能力,从而提高数据分类的准确性。

在本研究中,研究人员进一步改进了基于天鹰算法的ELM算法,提出了AO-DELM算法。AO-DELM算法通过引入自适应权重调整策略和自适应隐藏层节点选择策略来进一步提高数据分类的准确性。自适应权重调整策略能够根据输入数据的特征自动调整权重,从而提高分类的精度。自适应隐藏层节点选择策略能够根据输入数据的复杂度自动选择隐藏层节点的数量,从而提高分类的泛化能力。

通过在多个数据集上进行实验,研究人员发现AO-DELM算法相比于传统的ELM算法具有更高的分类准确性和更快的收敛速度。这表明AO-DELM算法在处理数据分类问题时具有很大的潜力。

综上所述,基于天鹰算法改进深度学习极限学习机AO-DELM是一种有效的数据分类方法。通过引入天鹰算法和自适应策略,AO-DELM算法能够提高分类的准确性和效率。未来的研究可以进一步探索AO-DELM算法在其他领域的应用,并进一步改进算法以提高其性能。

核心代码

%带初始权值的ELM-AEfunction[output,B,Hnew]=ELM_AEWithInitial(InputW,X,ActivF,number_neurons)% ELM-AE:the function  create an auto-encoder based ELM. % number_neurons:number of neurons in hidden layer.% X: the training set.% prefomance: RMSE of training.alpha=size(X);% 1:generate a random input weights% input_weights=rand(number_neurons,alpha(2))*2-1;input_weights = InputW;%输入初始权重% 2:calculating the hidden layertempH=input_weights*X';% activation functionswitch lower(ActivF)    case {'sig','sigmoid'}        %%%%%%%% Sigmoid         H = 1 ./ (1 + exp(-tempH));    case {'sin','sine'}        %%%%%%%% Sine        H = sin(tempH);        case {'hardlim'}        %%%%%%%% Hard Limit        H = double(hardlim(tempH));    case {'tribas'}        %%%%%%%% Triangular basis function        H = tribas(tempH);    case {'radbas'}        %%%%%%%% Radial basis function        H = radbas(tempH);        %%%%%%%% More activation functions can be added here                end% 3: calculate the output weights betaH(isnan(H)) = 0;H(isinf(H)) = 0;B=pinv(H') * X ; %Moore-Penrose pseudoinverse of matrix% calculate the output : Unlike other networks the AEs uses the same weight% beta as an input weigth for coding and output weights for decoding% we will no longer use the old input weights:input_weights. Hnew=X*B';output=Hnew*pinv(B');% 4:calculate the prefomanceprefomance=sqrt(mse(X-output));end

⛄ 运行结果

DELM训练集正确率Accuracy = 88.6%

DELM测试集正确率Accuracy = 97.1014%

AO_DELM训练集正确率Accuracy = 96.4%

AO_DELM测试集正确率Accuracy = 98.5507%

⛄ 参考文献

[1] 张昕.基于分布式极限学习机的不确定数据流分类技术的研究与实现[D].东北大学,2014.

[2] 杜小磊肖龙周庆辉陈志刚.增强同步挤压Stockwell变换和改进集成深层极限学习机的轴承工况识别方法[J].电机与控制学报, 2022, 26(11):141-150.

[3] 刘俊杰,张昕,杨乐,等.基于DELM的不确定数据流分类算法[J].计算机技术与发展, 2019, 29(3):5.DOI:10.3969/j.issn.1673-629X.2019.03.022.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计
目录
打赏
0
0
0
0
874
分享
相关文章
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
45 10
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
27天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
31 1
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等