【从零学习python 】85.Python进程池的并行计算技术应用

简介: 【从零学习python 】85.Python进程池的并行计算技术应用

进程池

当需要创建的子进程数量不多时,可以直接利用 multiprocessing 中的 Process 动态生成多个进程,但如果是上百甚至上千个目标,手动创建进程的工作量巨大,此时就可以使用 multiprocessing 模块提供的 Pool 方法。

初始化Pool 时,可以指定一个最大进程数,当有新的请求提交到 Pool 中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

from multiprocessing import Pool
import os, time, random
def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg, os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2)
    t_stop = time.time()
    print(msg, "执行完毕,耗时%0.2f" % (t_stop - t_start))
po = Pool(3)  # 定义一个进程池,最大进程数3
for i in range(0, 10):
    # Pool().apply_async(要调用的目标, (传递给目标的参数元组,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker, (i,))
print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行效果

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0执行完毕,耗时1.01
3开始执行,进程号为21466
2执行完毕,耗时1.24
4开始执行,进程号为21467
3执行完毕,耗时0.56
5开始执行,进程号为21466
1执行完毕,耗时1.68
6开始执行,进程号为21468
4执行完毕,耗时0.67
7开始执行,进程号为21467
5执行完毕,耗时0.83
8开始执行,进程号为21466
6执行完毕,耗时0.75
9开始执行,进程号为21468
7执行完毕,耗时1.03
8执行完毕,耗时1.05
9执行完毕,耗时1.69
-----end-----

multiprocessing.Pool 常用函数解析:

  • apply_async(func[, args[, kwds]]):使用非阻塞方式调用 func(并行执行,阻塞方式必须等待上一个进程退出才能执行下一个进程),args 为传递给 func 的参数列表,kwds 为传递给 func 的关键字参数列表;
  • close():关闭 Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出,必须在 closeterminate 之后使用。

进程池中的 Queue

如果要使用 Pool 创建进程,就需要使用 multiprocessing.Manager() 中的 Queue(),而不是 multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# 修改 import 中的 `Queue` 为 `Manager`
from multiprocessing import Manager, Pool
import os, time, random
def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))
def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "helloworld":
        q.put(i)
if __name__ == "__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用 `Manager` 中的 `Queue`
    po = Pool()
    po.apply_async(writer, (q,))
    time.sleep(1)  # 先让上面的任务向 `Queue` 存入数据,然后再让下面的任务开始从中取数据
    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果

(4171) start
writer启动(4173),父进程为(4171)
reader启动(4174),父进程为(4171)
reader从Queue获取到消息:h
reader从Queue获取到消息:e
reader从Queue获取到消息:l
reader从Queue获取到消息:l
reader从Queue获取到消息:o
reader从Queue获取到消息:w
reader从Queue获取到消息:o
reader从Queue获取到消息:r
reader从Queue获取到消息:l
reader从Queue获取到消息:d
(4171) End
相关文章
|
13天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
17天前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
28 2
|
18天前
|
开发框架 开发者 Python
探索Python中的装饰器:技术感悟与实践
【10月更文挑战第31天】 在编程世界中,装饰器是Python中一种强大的工具,它允许我们在不修改函数代码的情况下增强函数的功能。本文将通过浅显易懂的方式,带你了解装饰器的概念、实现原理及其在实际开发中的应用。我们将一起探索如何利用装饰器简化代码、提高可读性和复用性,同时也会分享一些个人的技术感悟,帮助你更好地掌握这项技术。
32 2
|
23天前
|
数据采集 Web App开发 iOS开发
如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?
本文介绍了使用 Python 爬虫技术获取淘宝天猫商品价格信息的两种方法。方法一使用 Selenium 模拟浏览器操作,通过定位页面元素获取价格;方法二使用 Requests 和正则表达式直接请求页面内容并提取价格。每种方法都有详细步骤和代码示例,但需注意反爬措施和法律法规。
|
24天前
|
数据采集 存储 Web App开发
利用Python 的爬虫技术淘宝天猫销量和库存
使用 Python 爬虫技术获取淘宝天猫商品销量和库存的步骤包括:1. 安装 Python 和相关库(如 selenium、pandas),下载浏览器驱动;2. 使用 selenium 登录淘宝或天猫;3. 访问商品页面,分析网页结构,提取销量和库存信息;4. 处理和存储数据。注意网页结构可能变化,需遵守法律法规。
|
25天前
|
数据库 开发者 Python
“Python异步编程革命:如何从编程新手蜕变为并发大师,掌握未来技术的制胜法宝”
【10月更文挑战第25天】介绍了Python异步编程的基础和高级技巧。文章从同步与异步编程的区别入手,逐步讲解了如何使用`asyncio`库和`async`/`await`关键字进行异步编程。通过对比传统多线程,展示了异步编程在I/O密集型任务中的优势,并提供了最佳实践建议。
17 1
|
25天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
51 1
|
1月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
1月前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
下一篇
无影云桌面