【从零学习python 】84.深入理解线程和进程

简介: 【从零学习python 】84.深入理解线程和进程

线程和进程

功能

进程,能够完成多任务,比如在一台电脑上能够同时运行多个QQ。

线程,能够完成多任务,比如一个QQ中的多个聊天窗口。

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位。
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

区别

  • 一个程序至少有一个进程,一个进程至少有一个线程。
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
  • 线程不能够独立执行,必须依存在进程中。可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人。

优缺点

线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程则相反。

进程间通信-Queue

from multiprocessing import Queue
q = Queue(3)  # 初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full())  # False
q.put("消息3")
print(q.full())  # True
# 因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4", True, 2)
except:
    print("消息列队已满,现有消息数量:%s" % q.qsize())
try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s" % q.qsize())
# 推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")
# 读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

说明:

  • 初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头)。
  • Queue.qsize():返回当前队列包含的消息数量。
  • Queue.empty():如果队列为空,返回True,反之返回False
  • Queue.full():如果队列满了,返回True,反之返回False
  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从队列中移除,block默认值为True
  • 如果block使用默认值,且没有设置timeout(单位秒),消息队列如果为空,此时程序将被阻塞(停在读取状态),直到从消息队列中读到消息为止。如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常。
  • 如果block值为False,消息队列如果为空,则会立刻抛出"Queue.Empty"异常。
  • Queue.get_nowait():相当于Queue.get(False)
  • Queue.put(item, [block[, timeout]]):将item消息写入队列,block默认值为True
  • 如果block使用默认值,且没有设置timeout(单位秒),消息队列如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息队列腾出空间为止。如果设置了timeout,则会等待timeout秒,若还没有空间,则抛出"Queue.Full"异常。
  • 如果block值为False,消息队列如果没有空间可写入,则会立刻抛出"Queue.Full"异常。
  • Queue.put_nowait(item):相当于Queue.put(item, False)

使用Queue实现进程共享

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break
if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    print('所有数据都写入并且读完')

相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
5天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
34 20
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
Java Linux 调度
硬核揭秘:线程与进程的底层原理,面试高分必备!
嘿,大家好!我是小米,29岁的技术爱好者。今天来聊聊线程和进程的区别。进程是操作系统中运行的程序实例,有独立内存空间;线程是进程内的最小执行单元,共享内存。创建进程开销大但更安全,线程轻量高效但易引发数据竞争。面试时可强调:进程是资源分配单位,线程是CPU调度单位。根据不同场景选择合适的并发模型,如高并发用线程池。希望这篇文章能帮你更好地理解并回答面试中的相关问题,祝你早日拿下心仪的offer!
39 6
|
1月前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
64 11
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
2月前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
6月前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。
|
7月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
220 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)

热门文章

最新文章

推荐镜像

更多