【从零学习python 】84.深入理解线程和进程

简介: 【从零学习python 】84.深入理解线程和进程

线程和进程

功能

进程,能够完成多任务,比如在一台电脑上能够同时运行多个QQ。

线程,能够完成多任务,比如一个QQ中的多个聊天窗口。

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位。
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

区别

  • 一个程序至少有一个进程,一个进程至少有一个线程。
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
  • 线程不能够独立执行,必须依存在进程中。可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人。

优缺点

线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程则相反。

进程间通信-Queue

from multiprocessing import Queue
q = Queue(3)  # 初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full())  # False
q.put("消息3")
print(q.full())  # True
# 因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4", True, 2)
except:
    print("消息列队已满,现有消息数量:%s" % q.qsize())
try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s" % q.qsize())
# 推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")
# 读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

说明:

  • 初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头)。
  • Queue.qsize():返回当前队列包含的消息数量。
  • Queue.empty():如果队列为空,返回True,反之返回False
  • Queue.full():如果队列满了,返回True,反之返回False
  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从队列中移除,block默认值为True
  • 如果block使用默认值,且没有设置timeout(单位秒),消息队列如果为空,此时程序将被阻塞(停在读取状态),直到从消息队列中读到消息为止。如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常。
  • 如果block值为False,消息队列如果为空,则会立刻抛出"Queue.Empty"异常。
  • Queue.get_nowait():相当于Queue.get(False)
  • Queue.put(item, [block[, timeout]]):将item消息写入队列,block默认值为True
  • 如果block使用默认值,且没有设置timeout(单位秒),消息队列如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息队列腾出空间为止。如果设置了timeout,则会等待timeout秒,若还没有空间,则抛出"Queue.Full"异常。
  • 如果block值为False,消息队列如果没有空间可写入,则会立刻抛出"Queue.Full"异常。
  • Queue.put_nowait(item):相当于Queue.put(item, False)

使用Queue实现进程共享

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break
if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    print('所有数据都写入并且读完')

相关文章
|
1月前
|
消息中间件 并行计算 安全
进程、线程、协程
【10月更文挑战第16天】进程、线程和协程是计算机程序执行的三种基本形式。进程是操作系统资源分配和调度的基本单位,具有独立的内存空间,稳定性高但资源消耗大。线程是进程内的执行单元,共享内存,轻量级且并发性好,但同步复杂。协程是用户态的轻量级调度单位,适用于高并发和IO密集型任务,资源消耗最小,但不支持多核并行。
45 1
|
30天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
13天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
17天前
|
Linux 调度 C语言
深入理解操作系统:进程和线程的管理
【10月更文挑战第32天】本文旨在通过浅显易懂的语言和实际代码示例,带领读者探索操作系统中进程与线程的奥秘。我们将从基础知识出发,逐步深入到它们在操作系统中的实现和管理机制,最终通过实践加深对这一核心概念的理解。无论你是编程新手还是希望复习相关知识的资深开发者,这篇文章都将为你提供有价值的见解。
|
14天前
|
Java
java小知识—进程和线程
进程 进程是程序的一次执行过程,是系统运行的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如CPU时间,内存空间,文件,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程 线程,与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比
24 1
|
20天前
深入理解操作系统:进程与线程的管理
【10月更文挑战第30天】操作系统是计算机系统的核心,它负责管理计算机硬件资源,为应用程序提供基础服务。本文将深入探讨操作系统中进程和线程的概念、区别以及它们在资源管理中的作用。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程和线程的管理技巧。
36 2
|
21天前
|
调度 Python
深入浅出操作系统:进程与线程的奥秘
【10月更文挑战第28天】在数字世界的幕后,操作系统悄无声息地扮演着关键角色。本文将拨开迷雾,深入探讨操作系统中的两个基本概念——进程和线程。我们将通过生动的比喻和直观的解释,揭示它们之间的差异与联系,并展示如何在实际应用中灵活运用这些知识。准备好了吗?让我们开始这段揭秘之旅!
|
25天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
47 4
|
25天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
51 1
|
7天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
40 0
下一篇
无影云桌面