【从零学习python 】83. Python多进程编程与进程池的使用

简介: 【从零学习python 】83. Python多进程编程与进程池的使用

创建进程

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情。

示例:创建一个进程,执行两个死循环。

from multiprocessing import Process
import time
def run_proc():
    """子进程要执行的代码"""
    while True:
        print("----2----")
        time.sleep(1)
if __name__=='__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)

说明

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动。

方法说明

Process(target [, name [, args [, kwargs]]])

  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码。
  • args:给target指定的函数传递的参数,以元组的方式传递。
  • kwargs:给target指定的函数传递命名参数。
  • name:给进程设定一个名字,可以不设定。

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)。
  • is_alive():判断进程子进程是否还在活着。
  • join([timeout]):是否等待子进程执行结束,或等待多少秒。
  • terminate():不管任务是否完成,立即终止子进程。

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-NN为从1开始递增的整数。
  • pid:当前进程的pid(进程号)。

示例:

from multiprocessing import Process
import os
from time import sleep
def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)
if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

Pool

开启过多的进程并不能提高你的效率,反而会降低你的效率,假设有500个任务,同时开启500个进程,这500个进程除了不能一起执行之外(CPU没有那么多核),操作系统调度这500个进程,让他们平均在4个或8个CPU上执行,这会占用很大的空间。

如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))
if __name__ == '__main__':
    p = Pool(8)  # 创建进程池,并指定进程池的个数,默认是CPU的核数
    for i in range(1, 11):
        # p.apply(task, args=(i,))  # 同步执行任务,一个一个地执行任务,没有并发效果
        p.apply_async(task, args=(i,))  # 异步执行任务,可以达到并发效果
    p.close()
    p.join()

进程池获取任务的执行结果:

def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))
    return n ** 2
if __name__ == '__main__':
    p = Pool(4)
    for i in range(1, 11):
        res = p.apply_async(task, args=(i,))  # `res` 是任务的执行结果
        print(res.get())  # 直接获取结果的弊端是,多任务又变成同步的了
    p.close()
    # p.join()  不需要再`join`了,因为 `res.get()`本身就是一个阻塞方法

异步获取进程的执行结果:

import time
from multiprocessing.pool import Pool
def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))
    return n ** 2
if __name__ == '__main__':
    p = Pool(4)
    res_list = []
    for i in range(1, 11):
        res = p.apply_async(task, args=(i,))
        res_list.append(res)  # 使用列表来保存进程执行结果
    for re in res_list: 
        print(re.get())
    p.close()

进程间不能共享全局变量

from multiprocessing import Process
import os
nums = [11, 22]
def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
def work2():
    """子进程要执行的代码"""
    nums.pop()
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))
if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()
    p2 = Process(target=work2)
    p2.start()
    print('in process0 pid={} ,nums={}'.format(os.getpid(),nums))

运行结果:

in process1 pid=2707 ,nums=[11, 22]
in process1 pid=2707 ,nums=[11, 22, 0]
in process1 pid=2707 ,nums=[11, 22, 0, 1]
in process1 pid=2707 ,nums=[11, 22, 0, 1, 2]
in process0 pid=2706 ,nums=[11, 22]
in process2 pid=2708 ,nums=[11]
相关文章
|
2月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
121 13
|
3月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
47 0
|
3月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
3月前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
206 1
|
4月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
4月前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
51 0
|
4月前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
60 3
|
5月前
|
调度 Python
python3多进程实战(python3经典编程案例)
该文章提供了Python3中使用多进程的实战案例,展示了如何通过Python的标准库`multiprocessing`来创建和管理进程,以实现并发任务的执行。
171 0
|
6月前
|
并行计算 开发者 Python
解锁Python多进程编程的超能力:并行计算的魔法与奇迹,探索处理器核心的秘密,让程序性能飞跃!
【8月更文挑战第12天】在Python编程领域,多进程编程是一项关键技能,能有效提升程序效率。本文通过理论与实践结合,深入浅出地介绍了Python中的多进程编程。首先解释了多进程的概念:即操作系统中能够并发执行的多个独立单元,进而提高整体性能。接着重点介绍了`multiprocessing`模块,演示了如何创建和启动进程,以及进程间的通信方式,如队列等。此外,还提到了更高级的功能,例如进程池管理和同步原语等。通过这些实例,读者能更好地理解如何在实际项目中利用多核处理器的优势,同时注意进程间通信和同步等问题,确保程序稳定高效运行。
54 0
|
6月前
|
Python
python Process 多进程编程
python Process 多进程编程
57 1

热门文章

最新文章