【从零学习python 】60.探索生成器:迭代的灵活利器

简介: 【从零学习python 】60.探索生成器:迭代的灵活利器

生成器

1. 生成器

利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。

2. 创建生成器方法1

要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )

L = [x * 2 for x in range(5)]
G = (x * 2 for x in range(5))

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

next(G) # 输出 0
next(G) # 输出 2
next(G) # 输出 4
next(G) # 输出 6
next(G) # 输出 8
G = (x * 2 for x in range(5))
for x in G:
    print(x)

输出结果为:

0
2
4
6
8

3. 创建生成器方法2

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

我们仍然用上一节提到的斐波那契数列来举例,回想我们在上一节用迭代器的实现方式:

class FibIterator(object):
    """斐波那契数列迭代器"""
    def __init__(self, n):
        """
        :param n: int, 指明生成数列的前n个数
        """
        self.n = n
        # current用来保存当前生成到数列中的第几个数了
        self.current = 0
        # num1用来保存前前一个数,初始值为数列中的第一个数0
        self.num1 = 0
        # num2用来保存前一个数,初始值为数列中的第二个数1
        self.num2 = 1
    def __next__(self):
        """被next()函数调用来获取下一个数"""
        if self.current < self.n:
            num = self.num1
            self.num1, self.num2 = self.num2, self.num1+self.num2
            self.current += 1
            return num
        else:
            raise StopIteration
    def __iter__(self):
        """迭代器的__iter__返回自身即可"""
        return self

注意,在用迭代器实现的方式中,我们要借助几个变量(n、current、num1、num2)来保存迭代的状态。现在我们用生成器来实现一下。

def fib(n):
    current = 0
    num1, num2 = 0, 1
    while current < n:
        yield num1
        num1, num2 = num2, num1+num2
        current += 1
    return 'done'

4. 使用send唤醒

我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。

例子:执行到yield时,gen函数作用暂时保存,返回i的值; temp接收下次c.send(“python”),send发送过来的值,c.next()等价c.send(None)

def gen():
    i = 0
    while i<5:
        temp = yield i
        print(temp)
        i+=1

使用send

f = gen()
next(f)  # 输出 0
f.send('haha')  # 输出 haha
next(f)  # 输出 None
f.send('haha')  # 输出 haha

使用next函数

f = gen()
next(f)  # 输出 0
next(f)  # 输出 None
next(f)  # 输出 None
next(f)  # 输出 None
next(f)  # 输出 None
next(f)  # 抛出 StopIteration 异常

使用__next__()方法(不常使用)

f = gen()
f.__next__()  # 输出 0
f.__next__()  # 输出 None
f.__next__()  # 输出 None
f.__next__()  # 输出 None
f.__next__()  # 输出 None
f.__next__()  # 抛出 StopIteration 异常

以上就是生成器的基本用法。生成器在迭代过程中可以暂停和继续,非常灵活,适合处理大量的数据或者需要延迟生成的数据。

相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
267 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
存储 索引 Python
|
1月前
|
Python
【10月更文挑战第18天】「Mac上学Python 29」基础篇10 - 循环结构与迭代控制
在Python中,循环结构是控制程序执行的重要工具。通过学习本篇内容,您将掌握如何使用for循环和while循环来高效地处理重复任务,并了解break、continue和else的使用方式。同时,我们还会探索嵌套循环和典型应用场景中的实际应用。
39 2
|
1月前
|
Python
Python生成器、装饰器、异常
【10月更文挑战第15天】
|
1月前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
398 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
22天前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
1月前
|
机器学习/深度学习 人工智能 架构师
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
83 0
下一篇
无影云桌面