【从零学习python 】57.Python中使用with关键字正确关闭资源

简介: 【从零学习python 】57.Python中使用with关键字正确关闭资源

with关键字的使用

对于系统资源如文件、数据库连接、socket 而言,应用程序打开这些资源并执行完业务逻辑之后,必须做的一件事就是要关闭(断开)该资源。

比如 Python 程序打开一个文件,往文件中写内容,写完之后,就要关闭该文件,否则会出现什么情况呢?极端情况下会出现 “Too many open files” 的错误,因为系统允许你打开的最大文件数量是有限的。

同样,对于数据库,如果连接数过多而没有及时关闭的话,就可能会出现 “Can not connect to MySQL server Too many connections”,因为数据库连接是一种非常昂贵的资源,不可能无限制的被创建。

来看看如何正确关闭一个文件。

普通版

def m1():
    f = open("output.txt", "w")
    f.write("python之禅")
    f.close()

这样写有一个潜在的问题,如果在调用 write 的过程中,出现了异常进而导致后续代码无法继续执行,close 方法无法被正常调用,因此资源就会一直被该程序占用者释放。那么该如何改进代码呢?

进阶版

def m2():
    f = open("output.txt", "w")
    try:
        f.write("python之禅")
    except IOError:
        print("oops error")
    finally:
        f.close()

改良版本的程序是对可能发生异常的代码处进行 try 捕获,使用 try/finally 语句,该语句表示如果在 try 代码块中程序出现了异常,后续代码就不再执行,而直接跳转到 except 代码块。而无论如何,finally 块的代码最终都会被执行。因此,只要把 close 放在 finally 代码中,文件就一定会关闭。

高级版

def m3():
    with open("output.txt", "r") as f:
        f.write("Python之禅")

一种更加简洁、优雅的方式就是用 with 关键字。open 方法的返回值赋值给变量 f,当离开 with 代码块的时候,系统会自动调用 f.close() 方法, with 的作用和使用 try/finally 语句是一样的。

上下文管理器

with 语句实质上是一个上下文管理器,with 语句后的对象都会有 __enter__()__exit__() 方法。在进入到上下文时,会自动调用 __enter__() 方法,程序正常执行完成,或者出现异常中断的时候,都会调用 __exit__() 方法。

class MyContext(object):
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __enter__(self):
        print('调用了enter方法')
        return self
    def test(self):
        1 / 0
        print(self.name + '调用了test方法')
    def __exit__(self, exc_type, exc_val, exc_tb):
        print('调用了exit方法')
        print(exc_type, exc_val, exc_tb)
with MyContext('zhangsan', 18) as context:
    context.test()


相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
258 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
380 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
机器学习/深度学习 人工智能 架构师
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
72 0
|
1月前
|
Python
python学习之旅(基础篇看这篇足够了!!!)(下)
python学习之旅(基础篇看这篇足够了!!!)(下)
27 0
|
1月前
|
存储 程序员 Python
python学习之旅(基础篇看这篇足够了!!!)(上)
python学习之旅(基础篇看这篇足够了!!!)(上)
35 0
|
5月前
|
存储 Python 容器
|
5月前
|
Python
Python中解包为关键字参数
【6月更文挑战第15天】
39 2
|
5月前
|
Python