【从零学习python 】54. 内存中写入数据

简介: 【从零学习python 】54. 内存中写入数据

内存中写入数据

除了将数据写入到一个文件以外,我们还可以使用代码,将数据暂时写入到内存里,可以理解为数据缓冲区。Python中提供了StringIOBytesIO这两个类将字符串数据和二进制数据写入到内存里。

StringIO

StringIO可以将字符串写入到内存中,像操作文件一样操作字符串。

from io import StringIO
# 创建一个StringIO对象
f = StringIO()
# 可以像操作文件一样,将字符串写入到内存中
f.write('hello\r\n')
f.write('good')
# 使用文件的readline和readlines方法,无法读取到数据
# print(f.readline())
# print(f.readlines())
# 需要调用getvalue()方法才能获取到写入到内存中的数据
print(f.getvalue())
f.close()

BytesIO

如果想要以二进制的形式写入数据,可以使用BytesIO类,它的用法和StringIO相似,只不过在调用write方法写入时,需要传入二进制数据。

from io import BytesIO
f = BytesIO()
f.write('你好\r\n'.encode('utf-8'))
f.write('中国'.encode('utf-8'))
print(f.getvalue())
f.close()
相关文章
|
7天前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
28 11
|
16天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
24 1
|
17天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
18天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
18天前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
30天前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
22天前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
23天前
|
监控 Java API
Python是如何实现内存管理的
Python是如何实现内存管理的
|
29天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
60 1
|
30天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
57 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
下一篇
无影云桌面