区间预测 | MATLAB实现基于QRCNN-BiGRU-Multihead-Attention多头注意力卷积双向门控循环单元多变量时间序列区间预测

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 区间预测 | MATLAB实现基于QRCNN-BiGRU-Multihead-Attention多头注意力卷积双向门控循环单元多变量时间序列区间预测

区间预测 | MATLAB实现基于QRCNN-BiGRU-Multihead-Attention多头注意力卷积双向门控循环单元多变量时间序列区间预测

效果一览

image.png
image.png
image.png

image.png
image.png

基本介绍

1.Matlab实现基于QRCNN-BiGRU-Multihead-Attention卷积神经网络结合双向门控循环单元多头注意力多变量时间序列区间预测;

2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计概率密度图;

1

3.data为数据集,功率数据集,用多个关联变量,预测最后一列功率数据,也可适用于负荷预测、风速预测;MainQRCNN_BiGRU_MATTNTS为主程序,其余为函数文件,无需运行;

4.代码质量高,注释清楚,含数据预处理部分,处理缺失值,如果为nan,则删除,也含核密度估计;

5.运行环境Matlab2021及以上.

模型描述

多头注意力卷积双向门控循环单元多变量时间序列区间预测
多头注意力卷积双向门控循环单元(Multi-head Attention Convolutional Bi-directional Gated Recurrent Unit)是一种深度学习模型,用于多变量时间序列预测。该模型结合了注意力机制、卷积神经网络、双向门控循环单元等多种技术,可以有效地捕获时间序列中的非线性关系和长期依赖性。
输入数据是多个时间序列,每个时间序列包含多个变量。该模型首先对每个时间序列进行卷积操作,提取其局部特征。然后,使用双向门控循环单元对序列进行编码,从而捕捉序列中的长期依赖性。接下来,使用多头注意力机制将不同时间序列之间的信息进行交互和融合,以获取全局特征。最后,使用全连接层将所有特征汇总起来,进行预测。
模型可以用于多变量时间序列的区间预测,即预测一段时间内的变量值。该模型的优点在于可以处理多个时间序列之间的复杂关系,并且可以处理不同长度的序列。此外,该模型还可以通过调整超参数和网络结构来适应不同的数据集和预测任务。

程序设计

  • 完整程序和数据获取方式:私信博主。
ntrain=round(nwhole*num_size);
    ntest =nwhole-ntrain;
    % 准备输入和输出训练数据
    input_train =input(:,temp(1:ntrain));
    output_train=output(:,temp(1:ntrain));
    % 准备测试数据
    input_test =input(:, temp(ntrain+1:ntrain+ntest));
    output_test=output(:,temp(ntrain+1:ntrain+ntest));
    %% 数据归一化
    method=@mapminmax;
    [inputn_train,inputps]=method(input_train);
    inputn_test=method('apply',input_test,inputps);
    [outputn_train,outputps]=method(output_train);
    outputn_test=method('apply',output_test,outputps);
    % 创建元胞或向量,长度为训练集大小;
    XrTrain = cell(size(inputn_train,2),1);
    YrTrain = zeros(size(outputn_train,2),1);
    for i=1:size(inputn_train,2)
        XrTrain{i,1} = inputn_train(:,i);
        YrTrain(i,1) = outputn_train(:,i);
    end
    % 创建元胞或向量,长度为测试集大小;
    XrTest = cell(size(inputn_test,2),1);
    YrTest = zeros(size(outputn_test,2),1);
    for i=1:size(input_test,2)
        XrTest{i,1} = inputn_test(:,i);
        YrTest(i,1) = outputn_test(:,i);
    end

    %% 创建混合网络架构
%%  区间覆盖率
RangeForm = [T_sim(:, 1), T_sim(:, end)];
Num = 0;

for i = 1 : length(T_train)
    Num = Num +  (T_train(i) >= RangeForm(i, 1) && T_train(i) <= RangeForm(i, 2));
end

picp = Num / length(T_train);     


    S = cumtrapz(X,Y);
    Index = find(abs(m-S)<=1e-2);
    Q = X(max(Index));


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章
|
3月前
|
存储 数据处理 索引
MATLAB中的基本数据类型与变量操作
【10月更文挑战第1天】 MATLAB 是一种广泛应用于数学计算和科学研究的编程语言,其核心是矩阵运算。本文详细介绍了 MATLAB 中的基本数据类型,包括数值类型(如 `double` 和 `int`)、字符数组、逻辑类型、结构体、单元数组和函数句柄,并通过代码示例展示了变量操作方法。
248 0
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MPSK调制识别matlab仿真
本项目展示一种基于CNN的MPSK调制识别算法,可在Matlab 2022a上运行。该算法能自动区分BPSK、QPSK及8PSK信号,利用卷积层捕捉相位特征并通过全连接层分类。训练过程涉及调整网络权重以最小化预测误差,最终实现对未知信号的有效识别。附带完整代码与说明视频。