分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

@TOC

效果一览

image.png

image.png

image.png
image.png
image.png
image.png
image.png

基本介绍

Matlab实现PSO-DBN粒子群优化深度置信网络多输入分类预测
多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
粒子群优化学习率、迭代次数和隐藏层单元数目。

深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。
RBM是一种神经感知器,由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。限制玻尔兹曼机和玻尔兹曼机相比,主要是加入了“限制”。限制玻尔兹曼机可以用于降维(隐层少一点),学习特征(隐层输出就是特征),深度信念网络(多个RBM堆叠而成)等。

1

模型描述

受限玻尔兹曼机(RBM)是一种具有随机性的生成神经网络结构,它本质上是一种由具有随机性的一层可见神经元和一层隐藏神经元所构成的无向图模型。它只有在隐藏层和可见层神经元之间有连接,可见层神经元之间以及隐藏层神经元之间都没有连接。并且,隐藏层神经元通常取二进制并服从伯努利分布,可见层神经元可以根据输入的类型取二进制或者实数值。

  • 既然提到了受限玻尔兹曼机(RBM),就不得不说一下,基于RBM构建的两种模型:DBN和DBM。如图二所示,DBN模型通过叠加RBM进行逐层预训练时,某层的分布只由上一层决定。例如,DBN的v层依赖于h1的分布,h1只依赖于h2的分布,也就是说,h1的分布不受v的影响,确定了v的分布,h1的分布只由h2来确定。而DBM模型为无向图结构。
  • 也就是说,DBM的h1层是由h2层和v层共同决定的,它是双向的。如果从效果来看,DBM结构会比DBN结构具有更好的鲁棒性,但是其求解的复杂度太大,需要将所有的层一起训练,不太利于应用。而DBN结构,如果借用RBM逐层预训练的方法,就方便快捷了很多,便于应用,因此应用的比较广泛。

2

程序设计

%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,
%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test  = ind2vec(T_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  参数设置
fun = @getObjValue;                   % 目标函数
dim = 5;                              % 优化参数个数
lb  = [ 20, 20, 20, 1.0, 100];        % 优化参数目标下限
ub  = [ 80, 80, 80, 3.0, 600];        % 优化参数目标上限
pop = 6;                              % 种群数量
Max_iteration = 10;                   % 最大迭代次数   


[nn, loss, accu] = nntrain(nn, p_train, t_train, opts);  % 训练

%%  仿真预测 
T_sim1 = nnpredict(nn, p_train); 
T_sim2 = nnpredict(nn, p_test );

%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  适应度曲线

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';

    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

[1] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503
[2] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
2月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。
|
2月前
|
存储 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已经成为了我们生活中不可或缺的一部分。本文将介绍网络安全的基本概念,包括网络安全漏洞、加密技术以及如何提高个人和组织的安全意识。我们将通过一些实际案例来说明这些概念的重要性,并提供一些实用的建议来保护你的信息和数据。无论你是网络管理员还是普通用户,都可以从中获得有用的信息和技能。
37 0
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
63 10
|
2月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为全球关注的焦点。本文将探讨网络安全漏洞、加密技术以及提升安全意识的重要性。通过深入浅出的解释和实际案例分析,我们将揭示网络攻击的常见手段,介绍加密技术如何保护数据安全,并强调个人和企业应如何提高安全防范意识。无论你是IT专业人士还是普通网民,这篇文章都将为你提供宝贵的信息和建议,帮助你在网络世界中更安全地航行。