分别用python和go语言来实现的风靡一时的2048 游戏,包含完整代码

简介: @[TOC](目录)2048 游戏实现主要包括以下几个步骤:1. 创建一个棋盘,通常使用二维列表表示。 2. 实现棋子的移动规则,左移、右移、上移、下移。 3. 判断游戏是否结束,即棋盘是否已满或者无空位可移动。 4. 实现游戏界面的显示。# 1、Python实现下面是一个简单的 Python 实现示例,运行效果如下:```python import pygame import sys import random# 初始化 pygame pygame.init()# 设置屏幕大小 screen_size = (80

2048 游戏实现主要包括以下几个步骤:

  1. 创建一个棋盘,通常使用二维列表表示。
  2. 实现棋子的移动规则,左移、右移、上移、下移。
  3. 判断游戏是否结束,即棋盘是否已满或者无空位可移动。
  4. 实现游戏界面的显示。

1、Python实现

下面是一个简单的 Python 实现示例,运行效果如下:

import pygame    
import sys    
import random
# 初始化 pygame    
pygame.init()
# 设置屏幕大小    
screen_size = (800, 800)
# 创建屏幕    
screen = pygame.display.set_mode(screen_size)
# 设置标题    
pygame.display.set_caption("2048 游戏")
# 定义颜色    
WHITE = (255, 255, 255)    
BLACK = (0, 0, 0)
# 创建棋盘    
board_size = 8    
board = [[0 for x in range(board_size)] for y in range(board_size)]
# 初始化棋子    
num_boards = 4    
board_History = [[0 for x in range(board_size)] for y in range(num_boards)]
# 随机生成初始棋局    
for i in range(num_boards):    
   for j in range(board_size):    
       board_History[i][j] = random.randint(0, 2)
# 定义绘制棋盘的函数    
def draw_board():    
   screen.fill(BLACK)
   for i in range(board_size):    
       for j in range(board_size):    
           if board_History[i][j] == 0:    
               pygame.draw.rect(screen, WHITE, (j * 40, i * 40, 40, 40))    
           else:    
               pygame.draw.rect(screen, WHITE, (j * 40 + 20, i * 40 + 20, 40, 40))    
               pygame.draw.rect(screen, BLACK, (j * 40, i * 40, 40, 40))
       pygame.display.update()
# 定义处理棋子移动的函数    
def move_board(direction):    
   for i in range(num_boards):    
       for j in range(board_size):    
           if board_History[i][j]!= 0:    
               if direction == "up" and board_History[i][j]!= 2:    
                   board_History[i][j] = board_History[i][j - 1]    
               elif direction == "down" and board_History[i][j]!= 0:    
                   board_History[i][j] = board_History[i][j + 1]    
               elif direction == "left" and board_History[i][j]!= 1:    
                   board_History[i][j] = board_History[i - 1][j]    
               elif direction == "right" and board_History[i][j]!= 1:    
                   board_History[i][j] = board_History[i + 1][j]
# 判断游戏是否结束    
def is_game_over():    
   for i in range(board_size):    
       for j in range(board_size):    
           if board_History[i][j] == 0:    
               return False    
           elif board_History[i][j] == 2:    
               return True    
   return False
# 游戏主循环    
while True:  
   for event in pygame.event.get():  
       if event.type == pygame.QUIT:  
           pygame.quit()  
           sys.exit()
       if event.type == pygame.KEYDOWN:  
           if event.key == pygame.K_UP and board_History[0][0]!= 0:  
               move_board("up")  
           elif event.key == pygame.K_DOWN and board_History[0][0]!= 2:  
               move_board("down")  
           elif event.key == pygame.K_LEFT and board_History[0][0]!= 1:  
               move_board("left")  
           elif event.key == pygame.K_RIGHT and board_History[0][0]!= 1:  
               move_board("right")
   # 绘制棋盘  
   draw_board()
   # 判断游戏是否结束  
   if is_game_over():  
       break
   # 刷新屏幕  
   pygame.display.update()  
AI 代码解读

2、Go实现

2048 游戏是一个简单而又具有挑战性的益智游戏,可以在一个小小的 4x4 网格中实现。玩家需要使用箭头键移动方块,使具有相同数字的方块相互碰撞,从而合并成更大的方块,最终达到目标数字 2048。
以下是用 Go 语言实现 2048 游戏的基本步骤:
创建一个 4x4 的二维数组来存储游戏网格中的方块。
初始化游戏网格,将所有方块设置为初始数字(例如 2 或 4)。
生成一个新的方块,将其放置在游戏网格的边缘。
检查新方块与现有方块是否相碰,如果是,将它们合并成更大的方块。
检查游戏网格是否已经达到目标数字 2048,如果是,显示胜利画面。
如果游戏网格已经填满,没有更多的空间生成新方块,则显示失败画面。
下面是一个简单的示例程序,它实现了上述基本步骤,并在终端中显示游戏运行效果:

package main
import (  
    "fmt"  
    "math/rand"  
    "time"  
)
type Tile struct {  
    Value int  
    Next   *Tile  
}
func main() {  
    boardSize := 4  
    board := make([][]Tile, boardSize)
    // 初始化游戏网格  
    for i := 0; i < boardSize; i++ {  
        row := make([]Tile, boardSize)  
        for j := 0; j < boardSize; j++ {  
            row[j] = Tile{Value: 2, Next: nil}  
        }  
        board[i] = row  
    }
    // 生成新方块  
    newTile := Tile{Value: 2, Next: nil}
    // 游戏循环  
    for {  
        // 打印当前游戏网格  
        fmt.Println(board)
        // 随机选择一个方向生成新方块  
        direction := rand.Intn(4)  
        switch direction {  
        case 0:  
            newTile.Next = board[0][boardSize-1]  
        case 1:  
            newTile.Next = board[1][boardSize-1]  
        case 2:  
            newTile.Next = board[2][boardSize-1]  
        case 3:  
            newTile.Next = board[3][boardSize-1]  
        }
        // 检查新方块是否与现有方块相碰  
        collision := false  
        for j := 0; j < boardSize; j++ {  
            if newTile.Next!= nil && newTile.Next.Value == board[0][j].Value {  
                collision = true  
                break  
            }  
        }  
        if collision {  
            // 合并方块  
            for j := 0; j < boardSize; j++ {  
                if newTile.Next!= nil && newTile.Next.Value == board[0][j].Value {  
                    board[0][j].Value *= 2  
                    newTile.Next = nil  
                }  
            }  
        } else {  
            // 将新方块添加到游戏网格  
            for j := 0; j < boardSize; j++ {  
                if newTile.Next == nil {  
                    board[0][j] = newTile  
                    newTile.Next = board[0][j+1]  
                } else {  
                    board[0][j] = newTile  
                    newTile = newTile.Next  
                }  
            }  
        }
        // 检查游戏是否结束  
        if board[0][0].Value == 2048 {  
            fmt.Println("恭喜你,你赢了!")  
            time.Sleep(1000)  
            return  
        } else if len(board[0]) == 0 {  
            fmt.Println("游戏失败,游戏网格已经填满。")  
            time.Sleep(1000)  
            return  
        }  
    }  
}
AI 代码解读

这个示例程序实现了一个简单的 2048 游戏,运行在终端中。玩家可以使用箭头键(上、下、左、右)来移动方块。当方块相碰时,它们会合并成更大的方块。当游戏网格达到目标数字 2048 时,游戏胜利。当游戏网格填满而无法生成新方块时,游戏失败。

目录
打赏
0
0
0
0
5
分享
相关文章
|
5天前
|
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
489 8
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
精通服务器推送事件(SSE)与 Python 和 Go 实现实时数据流 🚀
服务器推送事件(SSE)是HTML5规范的一部分,允许服务器通过HTTP向客户端实时推送更新。相比WebSocket,SSE更轻量、简单,适合单向通信场景,如实时股票更新或聊天消息。它基于HTTP协议,使用`EventSource` API实现客户端监听,支持自动重连和事件追踪。虽然存在单向通信与连接数限制,但其高效性使其成为许多轻量级实时应用的理想选择。文中提供了Python和Go语言的服务器实现示例,以及HTML/JavaScript的客户端代码,帮助开发者快速集成SSE功能,提升用户体验。
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
2月前
|
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
Go 语言入门指南:切片
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
331 7
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
36 3
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
282 8
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。