m基于FPGA的多径信道模拟verilog实现,包含testbench,可配置SNR,频偏,多径增益和多径延迟

简介: m基于FPGA的多径信道模拟verilog实现,包含testbench,可配置SNR,频偏,多径增益和多径延迟

1.算法仿真效果
其中Vivado2019.2仿真结果如下:

bba45f3ac1cebb8d97773ad5f94c848f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
41a3d9dc817c050bb72b43e5de496bc2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
瑞利分布是一个均值为0,方差为σ²的平稳窄带高斯过程,其包络的一维分布是瑞利分布。其表达式及概率密度如图所示。瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。
瑞利衰落能有效描述存在能够大量散射无线电信号的障碍物的无线传播环境。若传播环境中存在足够多的散射,则冲激信号到达接收机后表现为大量统计独立的随机变量的叠加,根据中心极限定理,则这一无线信道的冲激响应将是一个高斯过程。如果这一散射信道中不存在主要的信号分量,通常这一条件是指不存在直射信号(LoS),则这一过程的均值为0,且相位服从0 到2π的均匀分布。即,信道响应的能量或包络服从瑞利分布。若信道中存在一主要分量,例如直射信号(LoS),则信道响应的包络服从莱斯分布,对应的信道模型为莱斯衰落信道。通常将信道增益以等效基带信号表示,即用一复数表示信道的幅度和相位特性。由此瑞利衰落即可由这一复数表示,它的实部和虚部服从于零均值的独立同分布高斯过程。

   瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS,Line of Sight)的情况,否则应使用莱斯衰落信道作为信道模型。     

   瑞利衰落(Rayleigh Fading):在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。

  由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布。

   当信道中不存在一个较强的直达径时,其信号包络服从是瑞利分布。在移动无线信道中,Rayleigh分布是常见的用于描述平坦衰落信号或独立多径分量接收包络统计时变特性的一种分布类型。众所周知,两个正交的噪声信号之和的包络服从Rayleigh分布。Rayleigh分布的概率密度函数(pdf)为:

01440ecf371d774fef08fd144c523aa9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/08/17 14:13:20
// Design Name:
// Module Name: TEST
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TEST();

reg i_clk;
reg i_rst;
reg signed[7:0]i_SNR;//根据质量得到当前帧类型:-10~50
reg signed[15:0]i_fre;
wire signed[15:0]i_real1;
wire signed[15:0]i_imag1;
wire signed[15:0]o_Rnoise1;
wire signed[15:0]o_Inoise1;
wire signed[15:0]o_real1;
wire signed[15:0]o_imag1;

reg signed[1:0]i_Idiff;
reg signed[1:0]i_Qdiff;
initial
begin
i_Idiff = 2'b00;

#1440
repeat(12500)
begin
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
end
$stop();

end
initial
begin
i_Qdiff = 2'b00;
```

相关文章
|
29天前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
1月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
37 3
|
16天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
27 0
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
75 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
31 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
46 5
|
5月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
138 7
|
5月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
168 2
|
5月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
5月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
54 1

热门文章

最新文章

下一篇
无影云桌面